
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

THESIS

Identifying Non-Functional Requirements From Unconstrained Documents

Using Natural Language Processing and Machine Learning Approach

Author: Qais Gafer Sharida

Supervisor: Dr. Abualsoud Hanani

September 14, 2020

https://birzeit.edu

i

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

Identifying Non-Functional Requirements From Unconstrained Documents

Using Natural Language Processing and Machine Learning Approaches

ú

Í
�
B@ ÕÎª

�
JË @ð

�
éJ
ªJ
J.¢Ë@

�
é

	
ªÊË @

�
ém.
Ì'AªÓ i. î

	
E Ð@Y

	
j

�
J�AK.

�
èYJ

�
®ÖÏ @ Q�

	
«

�
�

KA

�
KñË@ ú

	
¯

�
éJ

	
®J

	
£ñË@ Q�

	
«

�
HAJ. Ê¢

�
JÖÏ @ YK
Ym�

�
'

Committee:

Dr. Abualsoud Hanani

Dr. Yousef Hassouneh

Dr. Ahmed Abusnaina

A thesis submitted in fulfilment of the requirements

for the degree of Maters in Software Engineering

September 14, 2020

https://birzeit.edu

ii

Identifying Non-Functional Requirements From Unconstrained Documents

Using Natural Language Processing and Machine Learning Approaches

Thesis
Author : Qais Sharida

Approved by the thesis committee:

Dr. Abualsoud Hanani : (Chairman of the Committee)

Dr. Yousef Hassouneh : (Member)

Dr. Ahmed Abusnaina : (Member)

Date of Defense:

August 25, 2020

iii

Declaration of Authorship

I, Qais Sharida , declare that this thesis titled, “Identifying Non-Functional

Requirements From Unconstrained Documents Using Natural Language Pro-

cessing and Machine Learning Approaches ” and the work presented in it are

my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master

degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

iv

Abstract

Requirements Engineering (RE) is the first phase in software development

life cycle (SDLC). It plays one of the most important and critical roles in soft-

ware projects, where all subsequent stages depend on it. Software require-

ment is usually documented in a form called requirements document. It mainly

contains both functional requirements (FR) and Non-functional requirements

(NFR). NFR are very significant to describe the properties and constraints of

the system. Early identification of NFR is important and has direct impact on

the system architecture and initial design decision in the first stages. Practically,

NFR requirements are extracted manually from the requirement document. This

makes it tedious, time consuming task and prone to various errors. In the liter-

ature, there are numerous studies that adopted traditional ML approach to clas-

sify NFR. However, majority of the approaches don’t investigate features ex-

traction techniques for requirements sentences in unconstrained requirements

documents. In this thesis we proposed an automatic approach to identify and

classify NFR using semantic and syntactic analysis with Machin learning algo-

rithms from unconstrained documents. We used PURE dataset that consists of

79 unconstrained requirements documents in different forms. The features were

extracted from requirement sentences using 4 different NLP methods include

statistical and state-of-the-art semantic analysis presented by google through

BERT model. And we adopted ML algorithms include: Naïve Base, support

vector machine, logistic regression, and deep learning CNN approach to clas-

sify NFR to its categories . Our results indicate that CNN model can efficiently

v

classify NFR by achieving accuracy between 84% and 87% using statistical vec-

torization method and achieved accuracy between 88% to 92% using word em-

bedding semantic methods. Furthermore, we proposed fusion model for com-

bining all NLP methods into one model with the CNN classifier. The fusion

model achieved a classification accuracy of 94%, with 2.4% improvement over

the best individual classifier.

 المستخلص

وأكثرها أهم الأدوار احد منولعب تو. هي المرحلة الأولى في دورة حياة تطوير البرمجيات,هندسة المتطلبات

بات م توثيق متطلة ما يتعاد. في مشاريع البرمجيات , حيث تعتمد عليها جميع المراحل اللاحقةحساسية

 ةلوظيفياطلبات ن المتأساسي على كل متوي بشكل تح. البرنامج في نموذج يسمى وثيقة المتطلبات

التعرف . وصف خصائص وقيود النظاملمهمة للغاية المتطلبات الغير وظيفية تعد .والمتطلبات غير الوظيفية

تم استخراج يعمليا , . ولىحله الأمراولي في مهم وله تأثير مباشر على بنية النظام وقرار التصميم الأ عليهاالمبكر

لكثير من وعرضة ,ومضيعة للوقت ضنيةممهمة هذا يجعلها . يدويا من وثيقة المتطلبات المتطلبات الغير وظيفية

 .ختلفةالملأخطاء ا

المتطلبات التقليدي لتصنيف التعلم الالي , هناك العديد من الدراسات التي اعتمدت نهجالسابقةفي الأدبيات

 فيومع ذلك , فإن معظم الأساليب لا تحقق في تقنيات استخراج الميزات لعبارات المتطلبات الغير وظيفية.

 .منظمةغير الالمتطلبات مستندات

 من المستندات غير المنظمة المتطلبات الغير وظيفية في هذه الأطروحة اقترحنا نهجًا آليًا لتحديد وتصنيف

 استخدمنا مجموعة وثائق المتطلبات العامة .الالي التعلمباستخدام التحليل الدلالي والنحوي مع مناهج

(PURE) في نهجنا , نستخلص الميزات من . وثيقة متطلبات غير منظمة بأشكال مختلفة 79التي تتكون من

طرق مختلفة في البرمجة اللغوية العصبية تشمل والتحليل الدلالي الأحدث أربعباستخدام تطلباتجمل الم

المتطلبات الغير لتصنيف تعلم الالة خوارزميات واعتمدنا (BERT) .تقدمه جوجل من خلال نموذج الذي

 اللوجستي والانحدار, (SVM) الداعمة المتجهات آلة, (NB) الساذجالمصنف البايزي : من خلال وظيفية

(LR), الشبكات العصبونية الالتفافيةفي العميق التعلم بالاضافة الى نهج (CNN.)

بكفاءة من فية ات الغير وظيلاحتياجانف يمكن أن يص الشبكات العصبونية الالتفافيةتشير نتائجنا إلى أن نموذج

 ٪ 92 إلى ٪ 88تحقيق الدقة بين و, الإحصائي المتجه طريقة باستخدام ٪ 87 و ٪ 84خلال تحقيق دقة ما بين

غوية البرمجة الل يع طرقر لدمج جماقترحنا نموذج الانصهاعلاوة على ذلك , . الدلالي الدمج طرق باستخدام

نسبة بج دقة تصنيف لاندمااوذج نمحقق . ة الالتفافيةالشبكات العصبونيالعصبية في نموذج واحد مع مصنف

 .فردي مصنف أفضل عن ٪2.4 بنسبة تحسن مع , 94٪

vi

vii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr.

Abualsoud Hanani for the continuous support of my master thesis, for his pa-

tience, motivation, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. In addition to my supervisor, I would

like to thank the other faculty at my great university, Birzeit University.

My sincere thanks also goes to my colleagues who accompanied me in this

educational path. Thanks also for volunteers who helped me with the manual

classification process in this thesis.

Finally, I must express my very profound gratitude to my family for pro-

viding me with unfailing support and continuous encouragement throughout

my years of study. This accomplishment would not have been possible without

them. Thank you.

viii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem statement . 4

1.3 Research objectives . 4

1.4 Overview of research approach . 5

1.5 Research Questions . 6

1.6 Structure of thesis . 6

2 Background 7

2.1 Software requirements : . 7

2.1.1 Functional requirement: . 7

2.1.2 Non-Functional requirements: 8

2.2 Natural language processing . 8

2.2.1 Syntactic analysis . 9

2.2.2 Semantic analysis . 9

2.2.3 Text Pre-processing . 9

2.2.3.1 Tokenization . 10

2.2.3.2 Punctuation removal 10

2.2.3.3 Stop-word removal: 10

2.2.3.4 Non-alphabetic tokens: 10

ix

2.2.3.5 Normalization: 11

2.2.3.6 Case folding: . 11

2.2.3.7 Parts of speech tagging (POS): 11

2.2.3.8 Lemmatization: 11

2.2.4 Features extraction (vectorization) : 12

2.2.4.1 Term frequency (TF): 12

2.2.4.2 Term frequency inverse document frequency (TF-

IDF): . 13

2.2.4.3 Word embedding: 13

2.2.4.4 Word2Vec: . 14

2.2.4.5 BERT : . 15

2.3 Machine Learning (ML) . 17

2.3.0.1 Support vectors machine (SVM): 17

2.3.0.2 Naive bayes classifier (NB): 18

2.3.0.3 Logistic Regression (LR): 19

2.3.0.4 Convolution neural network (CNN): 19

3 Literature review 21

3.1 Rule-based approaches : . 22

3.2 Machine learning approaches : . 24

3.3 Literature review summery table: 33

3.4 Summary: . 34

4 Research Methodology 36

4.1 Data description : . 36

4.1.1 PURE dataset annotation: 38

4.1.2 Dataset balancing : . 41

4.2 System design: . 43

x

4.2.1 Pre-processing: . 43

4.2.1.1 Tokenization: . 43

4.2.1.2 Data cleaning: . 44

4.2.1.3 Normalization: 45

4.2.2 Features extraction (vectorization) : 46

4.2.2.1 Random vectorization methods : 47

4.2.2.2 Word embedding method : 48

4.2.3 ML Classifiers : . 49

4.2.3.1 SVM classifier: . 50

4.2.3.2 Naive Bayes classifier: 50

4.2.3.3 Logistic regression classifier : 51

4.2.3.4 Convolution Neural Network (CNN): 52

4.2.4 Fusion models . 55

4.3 Evaluation : . 57

5 Experiments and results 59

5.1 Environment Setup: . 60

5.2 Pre-Processing : . 61

5.2.1 Tokenization : . 61

5.2.2 Data cleaning : . 62

5.2.3 Normalization : . 62

5.3 Features extraction : . 63

5.3.0.1 TF vectorization method : 63

5.3.0.2 TF-IDF vectorization method : 63

5.3.0.3 W2V vectorization method : 64

5.3.0.4 BERT Model : . 65

5.3.1 Parameters sitting for ML classifiers : 66

xi

5.3.1.1 Naive bayes : . 67

5.3.1.2 Support vector machines : 67

5.3.1.3 Logistic regression : 67

5.3.1.4 Convolution neural network : 67

5.4 Experiment 1: Optimal ML classifier using TF method 68

5.5 Experiment 2: Optimal ML classifier using TF-IDF method 69

5.6 Experiment 3: Optimal ML classifier using W2V model 70

5.7 Experiment 4: Optimal ML classifier using BERT model 70

5.8 NFR classification accuracy in different NLP techniques: 72

5.8.1 Optimal NLP techniques to transform NFR using CNN: . 72

5.9 Experiment 5 : Fusion model . 73

5.10 Statistical Test : . 76

6 Discussion: 78

7 Conclusion and future work: 84

7.0.1 Future work . 85

7.0.2 Threats to validity . 86

xii

List of Figures

2.1 Word representation in Word2Vec model 14

2.2 Similarity of words in Word2Vec model 15

2.3 Masked-LM strategy. [19] . 16

2.4 Support vector machine for linear classification 18

2.5 Sigmoid Function used in LR . 19

2.6 CNN architecture . 20

3.1 Semi-supervised approach for requirement classification 29

3.2 Hyprid Approach based on Ontology [39] 31

4.1 Overview of research approach . 37

4.2 PURE dataset distribution [17] . 37

4.3 Requirements labeling site : Registration Page 39

4.4 Requirements manual classification page 41

4.5 PURE dataset . 41

4.6 PURE dataset after balancing . 42

4.7 System Design: . 43

4.8 Data Pre-processing Tasks . 44

4.9 Word2Vec vector representation . 49

4.10 CNN architecture for sentence classification 53

4.11 Fusion model architecture . 56

xiii

4.12 Train/Test Method . 57

5.1 Pre-Processing Tasks in python . 62

5.2 Requirement sentence representation in TF 63

5.3 Requirement sentence representation in TF-IDF 64

5.4 Requirement sentence representation in W2V model 65

5.5 Requirement sentence representation in BERT 66

5.6 Output layer for CNN model . 66

5.7 ML classifiers accuracy using TF method 69

5.8 ML classifiers accuracy using TF-IDF method 70

5.9 ML classifiers accuracy using W2V model 71

5.10 ML classifiers accuracy using BERT model 71

5.11 ML classifiers with all NLP methods 72

5.12 Optimal NLP techniques using CNN classifiers 73

5.13 CNN classification accuracy using NLP techniques and fusion

model . 75

5.14 Confusion matrix for fusion model results 75

7.1 Sample results for fusion front-end model 87

xiv

List of Tables

3.1 Summary of the reviewed studies 33

4.1 Requirement sentence representation in TF 47

4.2 Requirement sentence representation in TF-IDF 48

4.3 Sentence representation in Word2Vec model 54

5.1 Environment setup . 61

5.2 ML performance metrics Using TF method 69

5.3 ML performance metrics using TF-IDF method 70

5.4 ML performance metrics using W2V model 71

5.5 ML performance metrics using BERT model 72

5.6 Performance metrics report for fusion model 74

5.7 Mean and Standard Deviation of Accuracy indicator. 76

5.8 Median and Interquartile Range of the Accuracy indicator. 76

5.9 Wilcoxon values of the accuracy indicator (TF, TF-IDF, W2V, BERT). 77

1

Chapter 1

Introduction

Requirement Engineering can be defined as "a set of activities for exploring,

evaluating, documenting, consolidating, revising and adapting the objectives,

capabilities, qualities, constraints and assumptions that the system-to-be should

meet based on problems raised by the system-as-is and opportunities provided

by new technologies"[49, p 35]. It is documented in a form called requirements

document (RD), that is suitable for communication, analysis and subsequent

implementation. RE is a crucial phase at the beginning of SDLC, and one of

the most important and critical role in systems and software projects. Where all

subsequent stages depend on them.

Requirements document is commonly written by a software analyst in coop-

eration with customer’s experts in natural language text for ease of communica-

tion within a community stakeholders. Several contractors who can bid for the

contract. Furthermore it may also contain diagrams or screenshots. The deci-

sion to represent requirements in natural language has pertinent interpretation.

First, natural language is understandable and accepted by most people. Sec-

ond, The ultimate purpose of the project is to produce a system satisfies the user

requirements. [49].

2

The input of requirements documentation phase are a bunch of agreed state-

ments of different types: general objectives, system requirements, software re-

quirements, environmental assumptions, relevant domain properties and con-

cept definitions.They be elicited through various activities such as one to one

or group interview, workshops, questionnaires, use-cases and prototyping.The

output of the specification and documentation phase is the first version of re-

quirements document.

There are a wide range of techniques that are usually used for requirements

specification and documentation. Unconstrained document is one of these tech-

niques. Its prose in natural language with no specific rules. This technique has

several advantages: there are no limitations in expressiveness on what we can

specify in natural language. Furthermore, free text in natural language can be

understood by all parties, and no special training is required. On the downside,

unconstrained requirements document prose in natural language that is prone

to several defect ,such as notably ambiguities, noises, remorse, immeasurably

statements and opacity. Other technique, disciplined documentation in struc-

tured natural language, where the requirements engineer follow local rules on

how statements should be written in natural language, or global rules on how

the requirements document should be organized [20].

Typically,software requirements distinguish into two types of requirements:

Functional Requirements (FR) and Non-Functional Requirements (NFR). This

mechanism will help to understanding the common characteristics of different

types of needs. NFR are very significant to describe the properties and con-

straints of the system.

Since the early days of software engineering NFL have existed, its categories

number estimated to be more than 150 categories. IEEE-Std 830-1993 identify

3

only 13 NFR, D.Mairiza [9]. identified from 252 NFR types the most commonly

considered NFR in most domains and they are (Reliability, Performance, Secu-

rity, Maintainability, and Usability. In our research we will focus on those NFR

in addition to availability that most of projects types probably need.

1.1 Motivation

The importance of RE is enormous to develop an effective software and reduce

software errors of software development. For example, system design and ar-

chitecture must carefully consider constraints and NFR which directly affect on

initial design design in the early stages. Undetected ignored requirements until

a later stage in software development life cycle would be very costly and greatly

affect on customer satisfaction .The arising errors caused by incorrect require-

ments have become a significant problem in software development. Problems

caused by requirements errors typically make up 25 % to 70 % of total software

errors in USA (2012).[8].

Early identification of NFR is very important in the evaluation of alternatives

architectural and design decisions. System architects need NFR to determine

constraints as: scalability, security, reliability, performance, availability etc, in

order to design the system architecture. In contrast of FR, NFR are significantly

difficult to handle changes due to absent or missing NFR. [21].

Requirements document are written in natural language and can be pro-

cessed as any document. It contains paragraphs, sentences, and words. It has

much in common with natural language documents challenges, such as seman-

tic and syntactic ambiguity, synonymy, coherence, and personality intention and

style. These challenges promote us to apply state-of-the-art NLP techniques

4

such as bidirectional encoder representations from transformers and W2V em-

bedding models. These models are the most modern effective approaches that

have a capability to capture the embed and context of the requirement sentences

or documents including semantic and syntactic meaning.

1.2 Problem statement

Requirements analysis are considered as one of the most common problematic

activities in SDLC. Practically, requirements are extracted manually from the

requirement document. This makes it a tedious task, prone to various errors,

requires a lot of effort and time consuming. Where each requirements docu-

ment need to be read, analyse, and classify the requirement sentences manually.

Furthermore, the major problems of identification the requirements are concen-

trated in NFR, where identification of FR are relatively easier than NFR. That

because the user’s recitation for NFR is often unclear, ambiguous or hidden in

functional requirements. Permanently, NFR that are identified by requirements

engineers and users manually based on their experience. In this thesis, we pro-

pose an automated approach to identify and classify NFR. We use syntactic and

semantic analysis to extract features from requirement sentences. And we adopt

ML approaches to classify NFR sentences to its categories.

1.3 Research objectives

In this study, we aim to achieve four objectives.

1. Preparing a dataset that contain a sufficient number of requirements sen-

tences extracted from unconstrained requirement documents including NFR

in various categories, and manually label the requirement sentences to its

related categories using a group of software engineers experts.

5

2. Extract meaning-full features from requirement sentences using statistical

analysis and state-of-the-art word embedding models.

3. Classify requirement sentences using ML approaches to its NFR relative

categories.

4. Investigate the effect of fuse multiple features that are extracted from dif-

ferent NLP techniques on the performance of NFR classification.

1.4 Overview of research approach

In this thesis we propose automated approach using NLP techniques and ma-

chine learning algorithms to identify and classify NFR from unconstrained re-

quirement documents.

Online website were developed in order to manual label requirement sen-

tences that had been extracted from requirement documents depending on a

group of volunteer experts in software engineering. Furthermore. In this ap-

proach NLP techniques were used to represent the requirement sentences fea-

tures syntactically and semantically in numeric forms, this task is a prerequi-

site process for machine learning classifiers. Two main NLP techniques were

adopted to extract features from requirement sentences. The first one are ran-

dom vectorization methods such as TF and TF-IDF. The second is word embed-

ding methods include Word2Vec and BERT, which are two common distributed

semantic models for better word representation based on big data. These meth-

ods allow words with similar semantic meaning to have similar representation.

And in order to identify and classify NFR we adopted traditional ML ap-

proaches includes naive base(NB), support vector machines(SVM) and logistic

regression (LR) in addition to deep learning algorithm through convolutional

6

neural network (CNN). Furthermore, we performed an approach to combined

multi NLP techniques in one fusion model, to enhance features extraction from

requirement sentence.

1.5 Research Questions

By this research, we aim to present answers to the following research questions:

RQ 1: How well natural language processing techniques can identify effec-

tively NFR from unconstrained requirements documents?

RQ 2: How well machine learning algorithms can automatically classify the

five NFR categories efficiently, based on IEEE-Std 830-1993 standard?

RQ 3: How well the proposed system performance can improve by fusing

different NLP features together into one system?

1.6 Structure of thesis

The rest of this thesis is structured as follows. Chapter 2 introduces background

in software requirements engineering, NLP and machine learning. Chapter 3

discusses related work in the field of requirements classification. It mainly dis-

cusses the studies objectives, extraction techniques, and algorithms employed

to classify requirements. Chapter 4 provides complete details about the research

methodology. Chapter 5, presents the experiment and results. Chapter6, discuss

the experiment results. Finally, chapter 7 provides conclusion, future works and

threats to validity.

7

Chapter 2

Background

2.1 Software requirements :

Software requirements are description of services that the software system must

provide and the constraints under which it must operate. IEEE standard glos-

sary defines a term requirement in software engineering as “A condition or ca-

pability needed by a user to solve a problem or achieve an objective” [12, p 62].

The software requirements are mainly divided into two types, FR and NFR.This

mechanism will help to understanding the common characteristics of different

types of needs.

2.1.1 Functional requirement:

FR is a description of the service that the software must perform. It defines the

feature of the system or its component. In other word, FR are features that allow

the system to function as it was intended. If the functional requirements are not

met, customer satisfaction will not be achieved and the system will fail.[6]

8

2.1.2 Non-Functional requirements:

NFR is a requirements that define the quality attribute of a software system and

describe how the system should work . NFR are often called "quality attributes.

Since the early days of software engineering NFL have existed, its categories

number estimated to be more than 252 categories. From those requirements

IEEE-Std 830-1993 identify only 13 main NFRs to be included in a software re-

quirements document. NFR can be divided into two main categories: 1. Exe-

cution qualities, such as safety and usability, which are realizable at run time.

2.Evolution qualities, such as scalability and maintainability which are associ-

ated with in the structure of the system. [10]

2.2 Natural language processing

Natural language processing (NLP) is a branch of Artificial Intelligence (AI) ly-

ing between linguistics and computer science, it helps machines to handle nat-

ural human language. Unlike human beings, computers can only understand

numbers. And this make NLP is a difficult issue to solve. The main objective

of NLP is representing words in a numeric format that is understandable by the

computers. Often, NLP techniques rely on machine learning to derive meaning

from human languages. NLP isn’t a new science. Recently, the interest in this

field has increased significantly with the increase in interest in human contact

with computers. This coincided with a revolution of big data and improved al-

gorithms. NLP extract natural language rules using algorithms into a form that

the computer can understand. In this section we will discuss the main common

techniques that used in NLP tasks. [48]

9

2.2.1 Syntactic analysis

Syntax is the grammatical structure of the text. Whereas syntactic analysis an-

alyzing natural language with the rules of a formal grammar with assigning a

semantic structure to text. It involves determining the subject and predicate and

the place of nouns, verbs, pronouns, etc. With reference to language dictionar-

ies the computer can recognize the part of speech for the words and would be

able to produce a structural description for the sentence through reading word

by word. Basically, syntactic analysis involved many tasks such as tokonization,

parts of speech tagging (POS) and lemmatization [35].

2.2.2 Semantic analysis

Semantic analysis is the process of relating syntactic structure from the levels

of phrases, clauses, sentences and paragraphs to the level of the writing . The

purpose of semantic analysis is to draw the exact meaning (dictionary meaning)

from the text and begin with the relationship between individual words [35]

2.2.3 Text Pre-processing

Text pre-processing is practice for cleaning and preparing text data into a form

that is predictable and analyzable for different tasks. Text pre-processing include

fundamental techniques to make the text data more usable with computer. The

most common techniques involved data preparation, non-alphanumeric data,

tokenization , stemming , lemmatization, and normalization. [35]

10

2.2.3.1 Tokenization

Tokenization is one of the most common tasks when it comes to working with

text data. In this process, the text is broken up into smaller chunks or seg-

ments,it also called segmentation. In this process the document is broken into

paragraphs, then the paragraphs divided into sentences. In English the sentence

is generally defined as "a word or a group of words that expresses thorough idea

by giving a statement order", or asking a question, or exclaiming [40]. There are

many criteria to extract sentences in English language . For example the sen-

tence can be identified the boundary with a capital letter and ends with stop

marks such as full stop, question mark or an exclamation mark.[35]

2.2.3.2 Punctuation removal

On the sentence level, punctuation such as stops, question marks, commas,

colons, etc, does not help in the syntactic field [24]. In this process all punc-

tuation is removed. Where the semantic meaning of sentences is based on the

basic words in the sentences.

2.2.3.3 Stop-word removal:

In any language there are many words frequently repeated without adding any

essential meaning. In English language stop words do not contribute to the

context or content of textual documents such as :”they, you, have,should etc” [4,

p 2].

2.2.3.4 Non-alphabetic tokens:

Natural language text may contain non-alphabetic tokens such as date, num-

bers, symbols, etc. In text pre-processing non-alphabetic tokens is deleted.[35]

11

2.2.3.5 Normalization:

Normalization is a process of converting all the words to a more uniform se-

quence by transforming it to a common base form. The normalization process

improves the text modelling and the text matching. This task work on the words

level. [8]

2.2.3.6 Case folding:

In this step, all letters will be changed to lowercase . Case folding is one of

the most common tasks in NLP for the purposes of similarity check.This task

allows words such as ‘Machine’ in the beginning of a sentence to match the

word ‘machine’ in other objects.[8]

2.2.3.7 Parts of speech tagging (POS):

It is a process of converting a segmented sentence to a list of tuples (word, tag).

The tag indicates whether the word is "noun", "verb","adjective", "adverb".. etc.

For example, if the word is a noun the tuple is (word , n). This process is required

to lemmatization step in text pre-processing.[8]

2.2.3.8 Lemmatization:

Lemmatization usually takes into consideration with morphological analysis of

words . The objective of this process is to reduce inflectional forms and some-

times derivationally related forms of a word to a common base form which is

known as lemma, in which different inflected forms of a word are grouping to-

gether so they represent as a single item[4].

12

2.2.4 Features extraction (vectorization) :

Features extraction in NLP is a technique for extract the words as features from

text. Feature extraction include minimize the number of resources required to

describe the data. It is a vital requirement step before any ML classification

process. This process is also known as vectorization. In this process sentences

properties are extracted in a format supported by machine learning algorithms.

Various methods are used to extract features from text, include random methods

and word embedding methods. All this methods aimed to convert text features

into numerical features.

2.2.4.1 Term frequency (TF):

TF is one of the basic vectorization methods and information retrieval in NLP.

It gives indication about the significance of a particular term within the overall

document or sentences. This method count how many times each word in the

sentence appears in all documents and represent it as vector form. To perform

TF, words dictionary should be created that contain all normalized words in the

document. This process called bag of words (BOW). In this method for each

sentence vector will be generated in the document in dimension equal the total

number of normalized words which is equal to BOW size. The rows corresponds

to a sentences and each column represents a unique word. The occurrence num-

ber in case the word is exist in the sentence equal one. And the if the word not

found is zero. [1]

Term ordering doesn’t considered in TF method , and the relationship among

the words are ignored. This is an obstacle in NLP. N-gram is a technique to im-

prove TF to adopt local ordering when we generate vectors to avoid the disad-

vantages of un-ordered words. In N-gram we look at token pairs, triplets, or

13

different combinations . One gram stands for traditional TF where we take one

word in each dimension. Bigram stands for a token pair and the words in tri-

gram. In our model we will use both bigram and trigram to handle the ordering

issues in TF method.

2.2.4.2 Term frequency inverse document frequency (TF-IDF):

TF-IDF is shorthand for two parts, "term frequency" and "document frequency".

The term TF counts how many times each word in the sentence appears in the

documents as we describe. Where the weight of the words don’t be considered.

TF only count the number of times that words appear in a given document. [1]

IDF part found to solve this issue by systematically weight the words. The

weight of frequent words are calculated across all documents. The weight of

the words that occur rarely in the corpus should be scaled up. While, high fre-

quent terms such as ’I’, ,’and’ ,’He’ or ’should’ need to weight down. Further-

more,removing stop words will also mitigate the effect of frequent the frequent

words in the Language that don’t add much semantic meaning to the sentence .

Equation 2.1 , shows how the weight of each word will be computed. tf : term

frequency , df: document frequency.

Wi,j = tfi,j × log(
N

dfi,j
) (2.1)

2.2.4.3 Word embedding:

Word Embedding is a form of word representation. It allows words with similar

meaning to be understood by machine learning algorithms semantically. Tech-

nically, word embedding is a mapping of words into vectors of real numbers to

14

bridges the human understanding of language to that of a machine. In word em-

bedding billions of words distributed semantically in vector space model. For

example, the vector of "vegetables" will be placed far away from vector repre-

sentation of "books".While vector of word "King" will be close to the vector of

word "Queen". Several method currently exist in word embedding, the most

well known methods for producing word embedding models are Word2Vec ,

Global Vectors and BERT model . And all of them have their pros and cons. [45]

2.2.4.4 Word2Vec:

Word2vec is a common word embedding model provided by Google for im-

prove words representation. This model was trained on nearly 100 billion of

words from Google news dataset [31]. Word2Vec is used to enhance the nu-

meric representation of the words through increase the accuracy of capturing

word context from a document in semantic and syntactic words relationship.

Each word in the requirement sentences will be represented in a vector of 300

dimensions. And each dimension represents one feature encoded from mil-

lions of words. The value of each feature ranging from zero to one. Figure 4.9

shows how the word “authorized” for example is represented in vector using

Word2Vec model.

FIGURE 2.1: Word representation in Word2Vec model

15

If two words share the same meaning,In word2vec model they are repre-

sented by similar vectors. Figure 2.2 shows the most similar words to the word :

“Quickly” using Cosine similarity, the resulting words are not just synonyms,it

may be antonyms,hypernyms, etc.

FIGURE 2.2: Similarity of words in Word2Vec model

Word2Vec contain two different models the first model called continuous bag

of words (CBOW).This model context of word is represented by the words that

occur around it. In the CBOW model, the distributed representations of context

(or surrounding words) are combined to predict the word in the middle. While

in the Skip-gram model, the distributed representation of the input word is used

to predict the context. While Skip-gram use a word to predict a target context.

In this study we adopted Skip-gram which is more deal with semantic meaning

of words 1.

2.2.4.5 BERT :

BERT is a text representation technique stands for Bidirectional Encoder Repre-

sentations from Transformers2. BERT confirmed to be state-of-the-art for a wide
1https://code.google.com/archive/p/word2vec/
2https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

16

range of NLP tasks such semantic analysis and text classification. This break-

through was the result of Google research in 2018 [14]. BERT is designed to

pre-train on two unsupervised tasks, masked language and deep bidirectional

representations which have deeper understanding of language on left and right

context that overflow single-direction language models. BERT trained on a large

volume Wiki Data of 2.5 billion words using two training strategies. Masked LM

and Next Sentence Prediction (NSP). In Masked LM fifteen percent of the words

in each sentence were replaced with (MASK). Then the model trained to predict

the mask words refer to the other context in the trained dataset. While in NSP

the model shrink the sentences into two part and trained to predict the second

sequence of the sentences. Figure 2.3 describe the architecture of Masked-LM

strategy. Where the "w" represent the words in the input sentence. And litter "o"

represent the encoder output vector for each words using transformers. Finally,

the model calculate the probability of each word in the vocabulary with softmax

and predict the masked values.

FIGURE 2.3: Masked-LM strategy. [19]

17

2.3 Machine Learning (ML)

Machine learning is a sub-field within artificial intelligence that enables a system

to learn from train data. ML also defined as “the study of computer algorithms

that allow computer programs to automatically improve through experience”,

Tom M. Mitchell [34]. Machine learning uses two main types of techniques:

supervised and unsupervised learning. In supervised learning algorithms try

to build a model relationship between the input features and target prediction,

and the we can be able to predict the output values for new dataset. While in

unsupervised learning, the algorithms try to find hidden patterns or relationship

in input data.

2.3.0.1 Support vectors machine (SVM):

SVM is a popular supervised machine learning model. SVM uses classification

algorithms for binary classification problems. The objective of the SVM algo-

rithm is to find a hyperplane line that segregating the instances into two classes

based on its features. SVM also used to solve multi classification problem using

one-against-one and one-against-all strategies. This classifier used to solve lin-

ear classification problems and can also used to solve non-linear classification

problems using a “kernel trick” function.[44]

For maximize the margin between hyperplane, gradient descent algorithm

is used with cost function algorithm to tune the weights for each feature. See

equation 2.2

Wt+1 ←Wt − ηt5w C(wt) (2.2)

18

FIGURE 2.4: Support vector machine for linear classification

Equation 2.3 used to minimize w and maximize the margin:

minwC(w) =
λ

2
‖w‖2 + 1

N

N∑
i

max(0, 1− yif(xi)) (2.3)

2.3.0.2 Naive bayes classifier (NB):

NB is a supervised classification algorithms and probabilistic model based on

Bayes theorem [25]. This algorithm is called “Naive” because it makes a naive

assumption that each feature is independent on other features which is incorrect

in real life.And the part “Bayes” helps us to find the probability of a hypothesis

given our prior knowledge. It is one of the most common used supervised ML

classifiers. NB have been demonstrated to be accurate and reliable in natural

language classification issues. See equation 2.4 for Bayes Theorem:

P (A|B) =
P (B|A)× P (A)

P (B)
(2.4)

19

2.3.0.3 Logistic Regression (LR):

LR is classification algorithm and also called logit model. logistic regression is

the baseline supervised machine learning algorithm for classification and has a

very close relationship with neural networks. Unlike linear regression which

only dealing with continuous variables. LR dealing with discrete classes using

the natural logarithm that transforms its output using the logistic sigmoid func-

tion to return a probability value which can then be mapped to two or more

discrete classes figure 2.5. There are three Types of Logistic Regression. First,

binary LR the categorical response has only two possible outcomes. Second,

multinomial LR the categorical response has three or more categories without

ordering. Third, ordinal LR three or more categories with ordering. [29]

FIGURE 2.5: Sigmoid Function used in LR

2.3.0.4 Convolution neural network (CNN):

CNN is a type of neural network that commonly originally designed for deep

learning computer vision tasks primarily used in image recognition and clas-

sification. Now a day CNN is a state-of-the-art technique in text classification.

It takes an input image as 3-dimensional array based on the image resolution.

The height and the width of the image represented 2 dimensions of the array.

While the third dimension is the color of the pixel (RGB). CNN architecture

mainly comprised of three layers, convolutional layer, pooling layer and Fully

connected input layer [30].

20

FIGURE 2.6: CNN architecture

1. Convolution layer :

Convolution is the first layer in CNN architecture. The objective of this

layer is to extract features through passing a filter over the input data (im-

age) respect to its dimensions. Convolution preserves the relationship be-

tween pixels by learning image features using small squares of input data.

2. Pooling layer : Pooling layer typically applied after a convolution layer.The

objective of this layer is to the number of features. Which reduces the di-

mensional of convolutional layer with retrieve the most important infor-

mation. Pooling layer mainly use max or average pooling to reduce the

dimensions of the data.

3. Fully connected layer : Fully connected layer are usually found towards

the end of CNN architectures that takes the output of convolution and

pooling layer to predicts the best label to find the class scores.

4. Stride : Stride: is the number of shift pixel that the filter move over the

input matrix. In our model the filter will only move vertically (y-axis).

21

Chapter 3

Literature review

In the last few years, there have been a lot of interest and studies in perform new

approaches to classify software requirements. Various learning methods have

been used, including rule-based methods, machine learning methods, genetic

methods, deep learning and various hybrid approaches.

This chapter elucidates various recent studies directions observed in require-

ments classification. Rule-based approaches became an interesting topic to clas-

sify requirements in the past decade as it performed well for specific dataset.

When the number of documents increased and the fields have expanded, this is-

sue has become more complicated. Nowadays, researchers shift towards statis-

tical methods using models generated by machine learning algorithms, leaving

rule-based methodologies out of the focus of modern research. This chapter is

organized in three subsections as follows : rule-based approaches review, ma-

chine learning approaches review and discussion.

22

3.1 Rule-based approaches :

Rule-based approaches classify text into organized groups by using linguistic

analysis. These rules used to construct a model using syntactic elements of a text

to identify pertinent categories based on its content. Each rule consists of pat-

tern and a predicted category. This approach has been demonstrated by many

researchers. Sharma et al, proposed a pattern based rule approach in order to

parsing the requirements based on NLP [42]. They Suppose presence of a cer-

tain combination of words and its relationship are uniquely for each category of

NFR . The researchers defined a domain specific language for software require-

ments to build textual syntactic pattern identification. The contribution of this

work confide to small set of complex rules. And the evaluation results came

with percentage recall between 60 and 85 % for five categories of NFR.

A similar approach adopted by Xiao et al [52]. They proposed a linguistic

analysis model to parse requirement documents with semantic meaning using

semantic pattern matching .They performed a study on 115 sentences from 18

different sources, and 25 applications by IBM . The evaluation results were 86.2%

accuracy extraction among open source dataset and 87.5% among IBM applica-

tions.

Cleland-Huang et al [11], suggested information retrieval approach to iden-

tify and classify NFR. They proposed a classification approach depend on train-

ing dataset for specify a set of keyword “Indicator term” for each NFR cate-

gories. In case the terms are identified and weighted, it can be used in classi-

fying the next sentence.Two levels of indicators has been adopted, top-K terms

that indicate all NFR types and all-terms indicator" that indicate each type of

23

NFR. A certain threshold has been adopted for each NFR category, and in case

the score did not achieve the assigned threshold, requirements are classified as

FR. In this research they obtained 79.9% overall recall and 42.5% precision. They

also found some types of NFR performed bad recall up to 40%, In contrast, they

achieved good results in usability NFR reaching to 80%.

Another research was done by Hussain et al adopted linguistic knowledge

to classify NFR in software requirement document [20] . The researches identi-

fied 9 groups of keywords: adjective, adverb, model keywords, etc. Where the

frequency of each keyword was incorporated as feature in main feature list and

was ranked using smoothed and non-smoothed probability measure. They set

a threshold for each keyword to attribute it for its specific NFR type. With high

percentage recall, the research team found this knowledge can help in classifica-

tion requirements and increase the quality of requirements .

Knauss et al, proposed a statistical approach using Bayesian statistics to

identify and classify security requirements[26]. The researchers used this method

to calculate the probability that the requirement is security. They achieved good

results in cases where the classifier is applied to the requirements from the same

source as it was trained with. But when the model tested on different require-

ments document from other domain, they achieved poor results. This was ex-

pected because of syntactic meaning significantly limited in case its used with

other data-sets.

24

3.2 Machine learning approaches :

Machine learning approaches have recently been gaining with researchers in text

classification due to its adaptability and accuracy for automated text mining.

In software requirements a significant number of works has adopted machine

learning approaches to identify and classify software requirements. Kurtanovic

and Maalej developed a supervised machine learning approach based on syn-

tactic and lexical features [27]. They used a data set from Amazon software

reviews in order to train the model. The research used two classifiers: support

Vector Machines and naive bayes to identify both FR and NFR. This research

found that part of speech tags are the most distinctive features includes with

the cardinal number feature. In this research they obtained recall between 70%

- 90% without word feature selection, and precision and recall above 70% using

only 2% of feature space.

Slankas and Williams conducted a study to aid analysis in more effectively

to extracting 14 categories of NFR from unconstrained requirements documents

[43]. They collected 11 requirements documents from "iTrust and PROMISE"

data-set. The study aimed to identify the sentence characteristics that affect on

classifier performance. Furthermore, they conducted a comparison between 5

various machine learning classifier to determine which is the best performance

to identify NFR .The research found that the sentence characteristics such as

lemma, stem and stop words had no little performance effect. They also con-

cluded that word vector representation through SVM performed twice effec-

tively compared to naive Bayes . Furthermore,they found that k Nearest Neigh-

bor (KNN) classifier with distance matrix had F1 measure score (precision and

recall) of 54 %,while Naive Bayes classifier had only 32 %.

25

Similar research proposed by Zhang et al, conduct an empirical study to clas-

sify NFRs using SVM classifier with three different NLP index include individ-

ual words, multi-word and N-gram processing [53]. They found that individual

words index outweigh the N-gram and multi-word in text representation for

short NFR sentences. They also made recommendations that the more sample

in a category in the data set, the better classification performance.

Vectorization method is one of the common methods used in semantic analy-

sis. For NFR classification, Amasaki and Leelaprute, evaluated the effect of vec-

torization methods on NFR classification [3]. They suggested five vectorization

methods : TF-IDF, Word to Vector (W2V) on both CBOW and Skip gram tech-

niques and Document to vector (D2V).The researchers used 4 classifiers in order

to prevent favor one of vectorization techniques in case they used one classifier.

The experiment used most common classifiers in literature: LR, NB and ran-

dom forests. To perform their experiment they used Tera-PROMISE repository.

This data set contain 635 instances include 370 NFR and 255 FR. The researchers

adopted only 4 categories to evaluate vectorization method : operational, per-

formance, security and usability. The research team found that both Doc2Vec

vectorization method and SCDV achieved higher performance than traditional

methods. Furthermore they found that some NFR is more difficult to identify

than others.

26

While most studies mainly focus classification performance measure using

precision and recall. Laszlos et al, considered time factor as part of measured

performance [46].They selected 12 classifiers such as SVM, NB, linear kernel,

KNN, Extra Trees and Linear logistic regression. The research used TERA-PROMIS

data-set. They used data-set that consists of 625 requirements sentences. They

found that Naive Bayes was the best classifier based on execution time,and both

precision and recall measurements compared with the rest of the classifiers.

Little research performed a multi label classification method to classify re-

quirements documents. Jiang et al, proposed a fuzzy similarity approach with

KNN (FSKNN) to classify multi-label sentence classification. In their method-

ology, a multi-label text classification propose to find the k nearest neighbors

from each training patterns [23]. In another research, Ramadhani et al [38], They

proposed an automation system of identification of non-functional requirements

from the requirement sentence-based classification algorithms. The researchers

suggested additional semantic factors to use with classification algorithms of

FSKNN but in single class label using hipernim and synonym based on Word-

Net library to automatically classify NFR. The research found that the use of

semantic factor with FSKNN improves the performance of Hamming-loss by

21.9% and 43.7% for the accuracy.

Convolution Neural Networks, are most commonly applied to analyzing vi-

sual imagery and image recognition. Recently, there has been considerable in-

terest in adopting CNN in NLP. Winkler and Vogelsang proposed an approach

that use CNN in classifying requirement specification as requirement and infor-

mation [51]. The research used 89 requirements specification documents to train

the model.The researchers found that the data-set was imbalanced. To solve

this problem,they used under sampling techniques after the data set have been

27

shuffled. They apply prepossessing techniques includes tokenization, stem-

ming, lemmatizing and stop word removal.Then the requirements sentences

were transformed into vectors using random vectorization methods to be com-

patible with Neural Network inputs. The research achieved precision of 73%

and recall of 89%. They also highlighted that this approach include vulnerabili-

ties such as there is no insight for what it learns, Furthermore it is not clear why

these results are produced. This problem is common among neural network

Society.

In a similar study, Baker et al proposed a fully connected ANN and CNN ap-

proaches to classify NFR [5].But in this researcher they used random vectors to

represent requirement sentence as input for CNN. To perform their experiment

they adopted only five requirement categories: operability , performance, secu-

rity and usability. The researchers used common data-sets called (PROMISE)

that include 1165 NFR cover 10 categories.The design has been performed in

5 steps: data pre-processing, ANN model construction, CNN model construc-

tion and evaluation. The evaluation results of this research achieved precision

ranging between 82% and 90% and recall within range between 78% and 85%

in ANN model. Where in CNN, they achieved precision between 82% and 94%,

and recall between 76% and 97% with high F-score equal 92%.

Dekhtyar and Fong also proposed CNN technique to identification require-

ments [13]. They adopted Naive Bayes over TF-IDF and Word Count techniques

as baseline to compare with CNN approach. The research objective was to clas-

sify the requirements into FR and NFR categories. To do this they used SecRec

dataset which labeled as security and non-security requirements. And they also

used additional requirements from other projects. The researchers implemented

28

a CNN multilayer feed-forward neural networks using python TensorFlow li-

brary, this library uses numerical computation based on data flow graph.The

research scored 4.74% higher precision compared to TF-IDF, and 10.17% com-

pared to word Count.

Among previous related studies review. We hardly found research direction

for classifying NFR using Recurrent Neural Network (RNN). Although it’s one

of the most common model used in text classification. Abdur-Rahman et al,

one of the few researchers suggested deep learning approach using RNN [37].

They performed their research design in three steps: data pre-processing involve

removing stop words, special characters, lemmatization and tokenization. Step

2: word vectorization : they used Word2Vec model to convert each word to

vector (word embedding). Then they trained three different classifiers :RNN,

GRU and LSTM models. In this research, they achieved high precision rate equal

0.961, and 0.967 recall. And they found that RNN is an effective approach to

classify NFR compared to CNN and GRU approaches.

Automatic NFR classification has well-known limitation because of small

number of pre-labeled requirements data-set. This problem is common within

researchers who specialize in classifying requirements. One of the researchers

who proposed a semi-supervised approach to solve this issue are Casamayor

et al [9]. In their research, they reduced the number of labelled requirements

using knowledge provided by un-categorized requirements. Through this ap-

proach they aimed to reduce the number of instances needed for learning. To

achieve this goal, they implemented expectation maximizing strategy based on

Bayesian classifiers. Figure 3.1 describe the proposed scheme they used. Once

the initial classifier is ready, it is used to classify other requirements. Where re-

quirements analysis support suggested classification by predict unlabelled NFR.

29

FIGURE 3.1: Semi-supervised approach for requirement classifi-
cation

The requirements that have been manually classified are categorized into highly

confident requirements. The research concludes that this approach will mitigate

the labelling effort by incorporating the manual revision and classification of

NFR.

In another aspect, ontology-based adopted to support number approaches

to identify and classify requirements engineering. Ontology-based relies heav-

ily on the expressive features of description logic languages. Shah et al pro-

posed a hybrid approach (NFR-Specifier) based on ontology to specify NFR

from informal requirements [41]. Their approach architecture starts from pre-

processing, ontology formulation, and NFR classification. Ontology formulation

model contain generating SRS ontology semi-automatically with rule based ap-

proach. They construct a distance similarity measure matrix using word feature

(noun,verb, adjective). After that, they group similar requirements into a cluster

appointed to specific NFR category. The research concludes that this approach

would have a positive impact for requirement engineering.

Two other studies suggested a hybrid approach with ontology formation and

NLP to identify and classified requirements. Vlas and Robinson [50] presented

an NLP technique aimed to bridge between natural language and formal re-

quirement documents. They used a semi-automated method for discover and

30

classify software requirements from both unconstrained and constrained docu-

ments. In their study they develop requirements classifier for natural language

(RCNL). RCNL constructs on multi-level ontology, where requirements based

lies on upper levels. The lower level are grammar based. RCNL classifier con-

structed by graphical development tool called "GATE". It contain annotation

pattern engine and annotation indexing. Finally, from 61.292 tokens, RCNL rec-

ognized 74.3% of those tokens. The rest 25.7% of tokens remain unclassified,

This has happened when the classification rule did not correspond with given

requirements. The researchers established that RCNL classifier provide an al-

ternative approach, but may be not too much generalized to work with other

data-set and needs to be more improved.

In concordance with previous research that classified NFR based on require-

ments ontology. Rashwan et al [39], proposed an approach adopted SVM to

classify requirements sentences into different ontology classes. The researchers

annotated manually in total 3064 sentences from PROMISE corpus documents

data-set. The sentences were categorized into four main classes: FR, several

types of NFR, constraints and others. Documents are prepossessing by tok-

enizer, splitter, steamer before they are classified using SVM classifier. After

that they populate NFR ontology with OWL individuals. This is done through

linking the sentences in the requirement documents with the identical classes in

the ontology. Figure 3.2 shows layers in system design, which contains classi-

fier layer and application layer that contain ontology. The research found that

the ontology foundation of this work allow to automated convert requirements

documents into a form of semantic representation.

While most research proposed supervised ML approach for requirements

classification. Few research proposed unsupervised ML approach to handle the

31

FIGURE 3.2: Hyprid Approach based on Ontology [39]

same issue. One of them done by Mahmoud and Williams [32]. They sug-

gested a clustering techniques based on systematic analysis to clustering NFR

to its various categories, such as security ,usability , reliability and performance.

The researcher relied on FR sentences to extract NFR. Where they assumed that

FR contain implicitly NFR. for example FR login sentence contains security re-

quirement. The research used wikipedia to find the semantically meaning of the

requirements sentences. They adopted three NLP techniques for sentences sim-

ilarity: Latent semantic analysis (LSA), Co-occurrence and Thesaurus method.

These techniques detect the similarity of words semantically. Then the study

used partitioning and hierarchical clustering for cohesive words to match class

with each NFR word cluster for detecting NFR sentences . In terms of semantic

analysis the research found that hierarchical clustering model is more effective

than partitioning algorithms. And for similarity semantic analyses. The research

found that the encyclopedia "Wikipedia" was more accurate than other methods

that relied on dictionaries.

The latest systematic literature review in NFR identification and classifica-

tion done by Binkhonain and Zhao published in 2019, ELSEVIER journal [7].

They reported systematic review of 24 studies used ML-based approaches for

classifying NFR. The objectives of this research lie in three questions: What ML

approaches are used in selected studies?, how the algorithms work? and how

32

the ML results have been evaluated. The research found 11 studies used SVM al-

gorithms. While 7 studies used NB algorithms from total of 24 studies. In ques-

tion two the researcher found across several studies the most NLP techniques

used are : stemming, stop words removal, part of speech, tokenization and

lematization. In evaluation phase they found that more than 70% of included

studies used k-fold cross validation. And for performance measurement tech-

niques that performed to evaluate the results the researchers found that three

quarters of studies used precision and recall measurements techniques and 7 of

them followed by F-score.

The most important issues that the study concluded is the close collaboration

between requirement engineering and ML approaches. Furthermore, the results

in the same ML algorithms varies from research to research. Where algorithm

performs well in some studies and performed bad in others. Finally ,at the end

of this systematic review, the researchers identified three open challenges. First,

there is the lack of shared training requirements dataset. Second, no standard

definition of NFR, and most of the literature didn’t use clear feature identifica-

tion and selection.

33

3.3 Literature review summery table:

In table 3.1 all reviewed studies were summarized. Research objectives and pro-

posed approach were focused on for each study. Further, extraction features that

were used in each study.

Study Author Study goal Proposed approach Extraction technique

S1 Sharma et al
Framework to automatically classify NFR from
natural language requirements.

Proposed a pattern based rule approach in order
to parsing the requirements based on natural
language processing

Pattern based rules

S2 Xiao et al

Automatically extract access control policies from
natural language software documents and resource
access information from scenario-based functional
requirements.

They proposed a linguistic analysis model to parse
requirement documents with semantic meaning
using semantic pattern matching

Syntactic-Pattern Matching.

S3 Huang et al
Identify NFR in both structured and unconstrained
documents, including requirements specifications that
contain scattered and non-categorized NFR

They proposed approach based on training dataset
for specify a set of keywords “Indicator term”
for NFR categories.

Syntactic analysis

S4 Hussain et al
Automate the process of detecting NFR sentences by
using a text classifier equipped with a part-of-speech
(POS) tagger.

Decision tree learning algorithm to classify NFR
Syntactic features
extraction

S5 Knauss et al Identify and classify security requirements
Proposed a statistical approach using Bayesian
statistics

Syntactic analysis

S6
Kurtanovic
and Maalej

Identify both FR and NFR from Amazon software
reviews

Supervised machine learning approach using SVM
and NB algorithm.

Syntactic and lexical features

S7
Slankas
and Williams

Identify NFR from unconstrained requirements
documents

Machine learning classifier using 5 supervised
learning (KNN ,NB,)

Statistical analysis

S8 Zhang et al
Using text mining techniques to classify NFRs
automatically

Machine learning (SVM with linear kernel)
Linguistical analysis (N-grams,
individual words, and multi
word expressions)

S9
Amasaki
and Leelaprute

Evaluated the effect of vectorization methods
on NFR classification

ML approach (SVM,RF,LR,NB) TF, TF-IDF,W2V,D2V

S10 Laszlos et al
Comparison of performances of NFR classification
processes

ML approach(NB , SVM, LLR, Label,
Propagation, DT, Extra Tree, KNN.

Statistical analysis (TF,TF,IDF)

S11 Jiang et al Multi-label text classification
Fuzzy similarity approach with SVM, MLKNN,
FSKNN

Statistical analysis

S12 Ramadhani et al
Automation system of identification of non-functional
requirements from the requirement sentence.

Classification algorithms of FSKNN with the
addition of semantic factors-based ISO / IEC 9126.

Semantic factors (Hypernym,
synonym based on WordNet)

S13
Winkler and
Vogelsang

Classifying requirement specification as requirement and
information using 89 requirements specification
documents to train the model.

Deep learning approach
Random vectorization
methods

S14 Baker et al
Classify NFR from PROMIS
dataset include five requirement categories.

Deep learning approach (CNN)
Random vectorization
Methods (TF, TF-IDF)

S15 Dekhtyar and Fong
Classify the requirements into FR and NFR categories
using SecRec dataset that include security
and non-security requirements

ML approach (NB , CNN)
TF-IDF and Word Count
techniques

S16 Abdur-Rahman et al
Classifying non-functional requirements using
RNN variants for quality software development

ML approach (RNN, GRU and LSTM) Word2Vec

S17 Casamayor et al
Reduced the number of labelled requirements
using knowledge provided by un-categorized
requirements

Semi-supervised learning approach, Bayesian
classifiers

Statistical analysis

S18 Shah et al
Specify NFR from informal requirements
NFR-Specifier)

Hybrid approach based on ontology Ontology formulation

S19 Vlas and Robinson
Discover and classify software requirements from
both unconstrained and structured documents.

Semi-automated method Multi-level ontology

S20 Rashwan et al
Classify requirements sentences into different ontology
classes include (FR , several types of NFR,
constraints and others.)

ML (SVM) based on ontology Ontology with OWL individuals

S21
Mahmoud
and Williams

Clustering NFR to its various categories, such as
security ,usability , reliability, and performance

Unsupervised ML approach (Clustering
techniques using K-mean)

Systematic analysis

TABLE 3.1: Summary of the reviewed studies

34

3.4 Summary:

In this chapter, the literature relevant to software requirements classification has

been presented and discussed. In this section we will summarize our conclu-

sions from these literature in 5 key points :

1. Rule based approach for classify software requirements was an interesting

topic in the past decade. While the number of requirements documents

increased and the fields have expanded, this approach faced significant

challenges. One of them is the generalization.Where rule based approach

performed well only for specific data-sets within number of confined do-

mains.But in case the dataset have changed ,this approach definitely fail

and the precision goes down as we indicated in the results of the previ-

ous literature. Recently, with the emergence of ML researchers shifted to-

wards statistical methods using models generated by ML algorithms that

most able to deal with various dataset. Recently, few studies have adopted

hybrid approach, mixing machine learning techniques with rule based ap-

proach and getting good results.

2. Few number of pre-classified software requirements dataset were found in

the previous literature. This problem is common within researchers in SE

field. It is noted that most of the research used the same dataset. Further-

more, the used dataset contain few number of instances. Which is just a bit

of what is commonly used for training models in ML. Another challenge

in the usually used dataset are unbalanced requirements classes. And due

to small size of samples, under sampling techniques will exacerbate the

35

problem of the small number of samples .While the over sampling tech-

nique in text mining don’t usually support well the performance of the

model.

3. Most of the literature didn’t focus on the feature extraction techniques.And

they didn’t extract meaningful features in features extraction phase. Where

the extracted features was not distinctive or shared among multiple classes.

This problem got due to extraction techniques that they used where the

most studies focused on the used ML approaches while the extraction tech-

niques was ignored. Furthermore, the small number dataset prevent ex-

tract evident features from requirements sentences.

4. Requirements classification face challenge of diversity of dialects.The same

requirement sentence can be written in several ways using a different word-

ing or different forms. Semantic analyses can mitigate this challenge. We

hardly found little number of literature have adopted semantic analysis

to classify software requirements. Where, most of studies used syntactic

analysis through random vectorization methods to transform the require-

ments sentences to numeric form. As a result, the model failed when its

evaluated from different dataset as we mentioned in a number of litera-

ture.

5. Although Deep learning methods are proved to be very good for text clas-

sification, and achieved state-of-the-art results on a suite of standard aca-

demic benchmark problems. However, few number of studies adopted

deep learning approaches in requirements classification. This encourages

us to study how successful adopt deep learning approach to solving such

issues.

36

Chapter 4

Research Methodology

The literature review summary in the previous chapter highlighted the need

for semantic analysis and feature extraction techniques to identify and classify

NFR. Furthermore, we highlighted on the failures of the rule-based approach.

This chapter introduce our methodology that adopted NLP techniques and ML

algorithms to identify and classify NFR from unconstrained documents. Figure

4.1 shows a block diagram represent our approach employed in this study. In

our research we adopted five NFR categories (reliability, performance, security,

availability, and usability) that had been identified by IEEE-Std 830-1993 as the

most commonly considered NFR in the most domains and software projects.

4.1 Data description :

In this thesis we used PURE dataset1, which contains 79 requirements docu-

ments in different forms. It is publicly available on the internet for research

use. And described in the article “PURE: A dataset of Public requirements doc-

uments” [16]. In this dataset requirements documents had written in natural

1http://fmt.isti.cnr.it/nlreqdataset/

37

FIGURE 4.1: Overview of research approach

English language. And it can be used for NLP tasks such as ambiguity detec-

tion, identification and requirements categorisation. It contains 34,268 sentences

covered multiple domain. The size of documents range from 7 to 288 A4 pages,

with an average of 47 pages per document. The construction of the documents

was distributed into: structure (S), unstructured (unconstrained) (U) and one

statement(O). Most of the documents are combination of unconstrained con-

tent and one-statement with about 38% of all documents, and the requirements

are represented in one sentence. The documents with uniform formats and the

structure documents were 15% of documents. Figure 4.2 shows the distribution

of documents in the PURE dataset.

FIGURE 4.2: PURE dataset distribution [17]

38

4.1.1 PURE dataset annotation:

Supervised learning in any ML approach needs a pre-labeled dataset in order to

train the models. As mentioned earlier, the PURE dataset include unconstrained

requirements documents and unlabeled. In order to conduct supervised learn-

ing experiments on this dataset, a sentence-level manual annotation is required.

This methodology in adopting manual labeling were used in a number of the

studies we discussed earlier. For example, Casamayor et al [9] used manual la-

beling to identify requirement sentences categories in order to identify the type

of further requirement sentences in iterative process. To perform the manual

annotation, first of all we extracted the requirements sentences from the docu-

ments using a set of common criteria that adopted in extracting sentences from

documents. Where the sentences boundary are identified by capital letters and

punctuation marks . In order to fulfill this objective, we prepared these docu-

ments by parsing all the documents into an XML format. It is worth to mention

here that not all the parsed sentences are related to the requirement sentences.

In most cases, in the requirement document, each sentence is talking about one

software requirement.Therefore, we decide to do the annotation (labelling) pro-

cess at the sentence level. Then we labeled the extracted sentences manually

using a set of procedures. To make it easier and from anywhere accessible, we

developed an online website called "Requirements classifier" 2 for this purpose.

We hired a group of experts in software engineering to volunteer in the anno-

tation process. In order to use the online requirement classifier website. First,

expert have to register and providing his experience in software engineering,

by selecting one of three levels based on the years of experience in this field, as

shown in figure 4.3.

2http://requirements-bzu.com/

39

FIGURE 4.3: Requirements labeling site : Registration Page

Once the volunteers registered on the website. They can login and start an-

notation process. All of the extracted sentences have been stored in a database,

and the system randomly selects a set of sentences for each expert. Each sen-

tence is displayed in a page with a form of options. After the experts read the

displayed sentence, they have to decide if the sentence is describing NFR or

something else. If the expert finds a sentence which doesn’t fit in any of the

specified NFR, the other option can be selected. In case the requirement sen-

tence is NFR, the expert has to choose the most appropriate NFR category out

of our five target NFR categories:(reliability, availability, usability, performance,

and security). As we mentioned before we rely on the NFR definition identified

by IEEE-Std 830-1993. To ensure the volunteers’ accurate knowledge about the

different types of NFR. The definition of included NFR listed below:

1. Reliability : specify the factors required to establish the required reliability

of the software system at time of delivery. [22, p 6]

2. Availability: specify the factors required to guarantee a defined availabil-

ity level for the entire system such as checkpoint, recovery, and restart. [22, p 6]

40

3. Security: specify the factors that protect the software from accidental or

malicious access, use, modification, destruction, or disclosure.[22, p 6]

4. Usability :specify the ease with which the user is able to learn, operate,

prepare inputs, and interpret outputs through interaction with a system.[22, p 7]

5. Performance :specify the factors the handles software system such as ca-

pacity, throughput, and response time. [22, p 7]

Moreover, the expert has to express his confidence for each sentence by se-

lecting two levels of confidence: low level or high level of confidence for each

answer, as shown in figure 4.4. We avoided relying on more than two levels of

confidence to avoid the neutral choice that most volunteers prefer. Each sen-

tence have to be labeled at least by two different experts to avoid annotation

errors. The sub-set of the annotated sentences that have two experts agreed on

the same label, will be considered in our experiments. To ensure accurate in la-

beling process, we relied on a sit of criteria to accept each review.First, accepted

review should be done by at least two experts. Second, the two experts should

have the same answer for each review. If the experts have assigned to two dif-

ferent categories, we choose the review that has the higher confidence. While if

the two confidences are equal, the preference is for the reviewer with higher ex-

perience. In case there is conflict with same confidence and the reviewers have

the same experience, the sentence is excluded.

After the annotation task is completed, we got 1846 requirement sentences,

labeled by 43 developers and software engineers experts with different levels

of experience. The distribution of these requirements categorise are varied as

follows : usability : 222, reliability : 62, performance 163, availability : 79, secu-

rity : 204 and other requirements include functional, constraint and irrelevant

sentences : 1119. Figure 4.5 show the distribution of requirements for 5 types of

41

FIGURE 4.4: Requirements manual classification page

NFR.

FIGURE 4.5: PURE dataset

4.1.2 Dataset balancing :

Usually, in any real data-sets, there is always some degree of imbalance between

classes. And if the level of imbalance is relatively low there should not be any

big impact on ML model performance. In our dataset as shown in the figure

4.5, there is high degree of imbalance between requirements categories (classes).

42

This issue is common in requirement engineering domain. Where the number of

NFR sentences always very small compared to FR and other contexts that don’t

include requirements. Furthermore, the number of NFR categories in the same

document are various. This issue led us to use a set of techniques to balance the

dataset in order to obtain reliable results from the classification process.

Re-sample technique is one of the most common techniques that is used for

balancing text instances.This technique based on both over-sampling for the

minority classes and under-sampling for the majority classes. This technique

adopted SMOTE strategy which is based on the concept of nearest neighbors to

create its synthetic data. SMOTE generates synthetic samples for minority class

and introducing synthetic instances. This inherently comes with the issue of cre-

ating more of the same data we currently have, without adding any diversity to

our dataset. While under sampling techniques achieved by delete percentage

number of instances randomly. After we performed balancing task,the dataset

has become fairly balanced for each category as its shown in figure 4.6.

FIGURE 4.6: PURE dataset after balancing

43

4.2 System design:

The system design of our study consists of three main parts, namely:dataset pre-

processing, features extraction and ML classification as shown in figure 4.7 . The

following sub-sections describe each of these components:

FIGURE 4.7: System Design:

4.2.1 Pre-processing:

Basically, requirements document contains paragraphs, sentences, words, nu-

meric values, punctuation, special character...etc. This document needs to be

segmented into smaller tokens for simpler processing and feature extraction.

Furthermore, some sentences or paragraphs in these documents are irrelevant

to the requirements and need to be excluded from requirement sentences. For

this purpose. We performed this task in three steps : tokenization, data cleaning,

and normalization. As described in the following subsequent subsections.

4.2.1.1 Tokenization:

In this process, requirements document is broken up into smaller segments. This

process is also called data preparation. the requirements document In this pro-

cess were broken into paragraphs, and the paragraph into sentences. We relied

on a set of criteria to identify the boundary of the sentence involve a capital letter

44

FIGURE 4.8: Data Pre-processing Tasks

for the start of the sentence and stop marks such as full stop, question mark or an

exclamation mark for the end of the sentence. In our experiments, we used sen-

tence tokenization function which is a python library 3 used to extract English

sentences from a document. And each requirement sentence will be chopped up

into pieces of terms.

Requirement sentence :
The number of mistakes noted by the students shall be decreased by 50%

in the first year.

Tokenized sentence :
[’The’, ’number’, ’of’, ’mistakes’, ’noted’, ’by’, ’the’, ’students’, ’shall’,

’be’, ’decreased’, ’by’, ’50’, ’%’, ’in’, ’the’, ’first’, ’year’, ’.’]

4.2.1.2 Data cleaning:

Data cleaning is one of the first steps in text pre-processing. It is an important

step before the data is ready for analysis. In its nature, requirement sentence,

as most of natural language texts, includes noises that don’t provide value in

semantic meaning . And in order to achieve better insights and perfect results,

it is necessary to have noise-free data.

3https://www.nltk.org/api/nltk.tokenize.html

45

The output of tokenization process is a set of requirements sentences, which

are segmented into tokens. These tokens contain both relevant and irrelevant

data such as punctuation, stop words (he ,you ,that,should..etc), upper-case and

lower-case words, symbols. The objective of data cleaning process is to clean

all irrelevant tokens from requirement sentences that may undermine the per-

formance of our model. We accomplished this task in three steps. First step,

punctuation removal, in this step all punctuation such as stops, question marks,

commas, colons, etc were removed from the requirement sentences. That be-

cause they do not help in the semantic meaning of the sentience. In our model,

the semantic meaning based on the basic words in that sentence. The second

step is stop-word removal. In this step, all high frequency words, such as they,

you, have,should etc, don’t add any essential information to the requirement

sentence were removed. In our model, we used python library called natural

language tool kit (NLTK) 4. This library contains most of the stop words in En-

glish language. The last step in this task is Non-alphabetic tokens removal that

didn’t contain useful information.

Tokenized sentence :

[’The’, ’number’, ’of’, ’mistakes’, ’noted’, ’by’, ’the’, ’students’, ’shall’,

’be’, ’decreased’, ’by’, ’50’, ’%’, ’in’, ’the’, ’first’, ’year’, ’.’]

Cleaned sentence :
[’number’, ’mistakes’, ’noted’, ’students’, ’shall’, ’decreased’, ’first’,

’year’, ’.’]

4.2.1.3 Normalization:

In normalization process, we aimed to convert all the words to a more uniform

sequence by transforming it to a common base form. In this task, we improve

4https://www.nltk.org/

46

the text modelling and the text matching. This task is applied on the words level

by three steps:case folding, Parts of Speech (POS) tagging and Lemmatization.

Cleaned requirement sentence :
[’Number’, ’mistakes’, ’noted’, ’students’, ’shall’, ’decreased’, ’first’,

’year’, ’.’]

Normalization :

[’number’, ’mistake’, ’note’, ’student’, ’shall’, ’decrease’, ’first’, ’year’]

4.2.2 Features extraction (vectorization) :

The second step in our methodology is to extract representative features from

the requirement sentences using a various number of features extraction tech-

niques used in the NLP. In our system we used four state-of-the-art vectorization

techniques in NLP . Two of them are syntactical based methods: TF and TF-IDF.

As mentioned in literature review chapter in this thesis. These vectorization

methods are the most common used in text representation. The other two vec-

torizatin methods are semantical based methods: Word2Vec5 and BERT6. These

methods are the state of the art language representations based on unlabelled

big data of texts corpus.

Using these methods, we transform the requirements sentence into a numer-

ical representation feature in the form of high dimensional vectors which used

as input for training machine learning classifiers. This process is also known as

vectorization. In this process, requirements sentences properties are extracted

in a format supported by machine learning algorithms, and make differences

to distinguish it from other requirements categories. This section explains in

more details how these NLP methods are used to transform the requirements

sentences from text to numerical vectors:
5https://code.google.com/archive/p/word2vec/
6https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

47

4.2.2.1 Random vectorization methods :

• Term frequency (TF):

TF is one of the basic vectorization methods and information retrieval in

NLP. It gives indication about the significance of a particular term within

the overall requirement documents. In our approach, we use this method

to count how many times each word in the requirement sentences appears

in all requirement documents and represent it as a vector. To perform TF

method, we created words dictionary containing all normalized words in

the requirement document. This process also called bag of words (BOW).

In this method for each requirement sentence we generated vector in di-

mension equal to the total number of normalized words which are equal to

BOW size. The rows corresponds to a requirement sentence and each col-

umn represents a unique word. The occurrence number in case the word is

exist in the sentence increasing by one. While if the word is not found the

feature assigned to Zero. The following example shows how requirement

sentence represent as vector using TF method:

Req-sentence:The system shall refresh the display every 30 seconds.

After Pre-processing : [’system’, ’shall’, ’refresh’, ’display”, ’second’]

TABLE 4.1: Requirement sentence representation in TF

BOW : access display refresh year shall system
Vector : 0 1 1 0 1 1

Term ordering doesn’t be considered in TF method , and the relationship

among the words are ignored. This is an obstacle in this method. N-gram

48

is a technique to improve TF to adopt local ordering when we generate

vectors to avoid the disadvantages of un-ordered words.

• Term frequency inverse document frequency(TF-IDF):

In this technique we quantify a word in requirement documents. Weight of

each word were computed which signifies of its importance in all require-

ment documents . This method is widely used in information retrieval in

NLP. The weight of the words that occur rarely in the corpus should be

scaled up. While, high frequent terms such as ’I’, ,’and’ ,’He’ or ’should’

need to weight down. Furthermore,removing stop words will also miti-

gate the effect of frequent the frequent words in the Language that don’t

add much semantic meaning to the sentence . This methods will improve

the features that can be extracted from the requirement sentences so that

can differentiate between NFR categories. Table 4.2 shows how the re-

quirement sentence will be represented in TF-IDF:

TABLE 4.2: Requirement sentence representation in TF-IDF

access display refresh year shall system
Vector : 0 0.7512 0.5231 0 0.1270 0.3411

4.2.2.2 Word embedding method :

• Word2Vec :

In our research, Word2Vec 7 is used to enhance the numeric representa-

tion of the words through increase the accuracy of capturing word context

from a document in semantic and syntactic words relationship. Each word

in the requirement sentences were represented in a vector of 300 dimen-

sions. And each dimension represents one feature encoded from millions

7https://code.google.com/archive/p/word2vec/

49

of words. The value of each feature in the word representation ranging

from zero to one. Figure 4.9 shows how the word “authorized” is rep-

resented in a vector using Word2Vec model. The objective of using this

model in this study is to invest the affect of semantic representation for

requirement sentences using big data model to achieve high accuracy in

NFR classification.

FIGURE 4.9: Word2Vec vector representation

• BERT model: BERT 8is an inflection point in the application of machine

learning for NLP.In this thesis we used BERT model to represent require-

ment sentences in semantic numerical vectors. Then, we trained the clas-

sifiers on top of the transformer output of the BERT model.

4.2.3 ML Classifiers :

In previous stages of our proposed system, we segmented requirements docu-

ments into sentences, then each sentence were converted into a numerical repre-

sentation in the form of a vector in order to be used by ML models. In this Phase,

we built ML models to classify the vectors that represent requirements sentences

into our target NFR categories (classes); usability, availability, reliability, secu-

rity, performance or others. We choose the most common three supervised ML

algorithms applied to a similar task: NB, SVM, and LR. NB classifier commonly

adopted as baseline in most studies because of its probabilistic model based on

8https://github.com/google-research/bert

50

the Bayes theorem. While we used SVM and LR due to there results in previ-

ous and similar studies in the literature . Furthermore, we used CNN classifier

which is considered as the state of the art classifiers that belong to deep learning

models. This classifiers enhance features extraction and increase the accuracy of

classification compared with the traditional classifiers. In the following sections

we propose how we performed the four ML models that we used in our system:

4.2.3.1 SVM classifier:

SVM is a discriminative classification method which is commonly recognized to

be more accurate in NLP as we discussed in the literature review chapter earlier

in this thesis [7]. In our system, SVM classifier were used to solve non-linear

classification problem using a “kernel trick", which is a method for using a lin-

ear classification model to solve a nonlinear problem by projecting the feature

vectors of the target classes into a higher dimension in which the classes are lin-

early separable. Requirement sentences features vectors are mapped to a high

dimensional vector space, in which each dimension is linearly separable by de-

cision boundaries which is called (hyperplanes). In our research, we have five

classes of NFR and the others class. The traditional SVM classifier is a binary

classifier, i.e. can be applied to two classes only. In our case, we have multiple

classes (i.e. six classes). To handle this issue one-against-one and one-against-

all strategies are used. In order to maximize the margin of the hyperplane, the

weight of each feature is minimized using gradient descent algorithm with cost

function algorithm.

4.2.3.2 Naive Bayes classifier:

NB classifier is another classifier we adopted in our methodology. This classi-

fier is a probabilistic model based on Bayes theorem. A number of properties

51

in this classifier have prompted us to use it in our NFR classification model.

Naive Bayes is one of the most common used supervised ML classifiers [7]. It

is widely used to solve NLP classification problem as mentioned in Literature

review. Naive Bayes is demonstrated to be accurate and reliable in natural lan-

guage classification tasks. Small number of instances is one of the most prob-

lematic issues in requirement classification. NB classifier does not require a lot

of training data which is one of the issues that led us to choose it in our research.

NB classifier needs numerical features as input. In our model. Requirement

sentences were transformed into vectors using feature extraction techniques dis-

cussed earlier in this chapter (TF, TF-IDF, W2vec, and BERT). After that, we use

Bayes theorem to find the probability of each requirement sentence to which cat-

egory belongs using our training dataset. In our case, if we want to calculate the

probability of requirement sentence to be, for example, “Security” NFR:

Yi : represent security label.

(x1...xn) : requirement sentence feature vector.

P(yi | x1, x2, . . . , xn) : probability of yi being (security requirement) given (x1..

xn) features exist .

P(yi) : the prior probability of security requirement in the dataset.

P(x1, x2, . . . , xn | yi) : probability of requirement sentence features given its

security requirement.

4.2.3.3 Logistic regression classifier :

Logistic regression deals with discrete classes using the natural logarithm. It

transforms its output using the logistic sigmoid function to return a probabil-

ity value which can then be mapped to two or more discrete classes [47]. We

used NLP techniques to represent requirement sentences in suitable form. In

52

case of TF and TF-IDF, each requirement sentence is represented into one vec-

tor. This makes it suitable as input for LR. In the case of W2V and BERT model

requirement sentence is represented in multi dimension vectors, one vector for

each word in the sentence. Thus, we have to convert the multiple vectors to

one vector for each sentence using mean value for all vectors represented from

requirement sentence.

4.2.3.4 Convolution Neural Network (CNN):

CNN algorithm is commonly applied for analyzing image classification. CNN

takes an input image as 3 dimensional array based on the image resolution .

The height and the width of the image represented 2 dimensions of the array.

While the third dimension is the color of the pixel (RGB). In our model we apply

CNN model to identify and classify requirement sentences. The sentences are

segmented into words. Each word is converted to vectors using the four feature

extraction techniques. The TF and TF-IDF techniques convert the requirement

sentences to random vectors, where in the case of the Word2Vec and BERT, the

sentences are converted into vectors with adopting the semantic meaning. These

vectors pass through three layers in the CNN as shown in figure 4.10.The follow-

ing section describes how these layers are performed.

1. Convolution layer :

The input layer of the Convolution Layer is 2 dimensions other than what

is common in case of image recognition. The x dimension represents the

vector of each word. Where, the Y dimension represents the words in each

sentence. Figure 4.3 shows the representation vectors for the requirement

sentence: " The product shall be easy for a relater to learn." in Word2Vec

model.

53

FIGURE 4.10: CNN architecture for sentence classification

The size of the x dimension for CNN input is equal to x-dimension of the

vector that represented by NLP method. The size of y-dimension for CNN

input is equal to the total number of words for longest requirement sen-

tences in the dataset that we used. The x-dimension of convolution layer

in case of W2V and BERT model equal to 300, which is equal to the vectors

that are represented by these models for each word.

2. Feature map (filter):

In our model, we perform three sizes of feature map; two,three and four y-

dimension with full x-dimension depend on the input layer. This method,

somewhat, like bi-grams, tri-grams and 4-grams that used in text mining

and NLP tasks.The purpose of this layer is to select new features from

54

TABLE 4.3: Sentence representation in Word2Vec model

Vector
website 1.266 e-03 -1.718 e-01 2.812 e-01 6.494 e-02

shall 5.273 e-02 -2.246 e-02 3.437 e-01 2.832 e-01
achieve -2.275 e-01 9.4726 e-02 -2.812 e-01 6.738 e-02

time -4.736 e-02 -4.687 e-02 8.251 e-02 1.245 e-01

the words combination. The y-dimension for both filters are the same in

the convolutional Layer, which is equal to the total number of words in

the dictionary. While, the size of x-dimension using word2vec and BERT

methods are 300 as mentioned earlier.

3. Stride :

Stride: is the number of shift pixel (step) that the filter move over the input

matrix. In our model, the filter is moving vertically (y-axis) only. Because

the width of the filter represents a single word and dividing this vector is

useless. The stride number for vertical move is one. So, the feature map

moves in Y-demotion one step at a time until reaches the last word. The

number of steps is calculated by equation 4.1:

NumberofSteps = (CLheight − Filterheight) + 1 (4.1)

CL : Convolutional layer

4. Fully Connected Layer:

The function of a fully connected layer is the last layer used to classify val-

ues from features extracted to final classes (our five NFR categories and the

others). Fully connected layer takes the output of convolution and pool-

ing layers and transform them to classify the input requirement sentence

into its types (Usability, Security, Availability,..etc). After pooling layer,

55

we convert our matrix into one vector and feed it into a fully connected

layer like normal neural network. The resulting vector is then multiplied

by weights and pass through an activation function. Soft-max activation

function, which is common function used in deep learning, is used in our

case. After that we forward the vector to the output layer, Where, each

neuron represents a label belongs to one of the target NFR categories and

the others.

4.2.4 Fusion models

In previous models we introduce different feature extraction techniques. Each

techniques has its own properties and advantages. In this thesis we propose

another approach to achieve better results based on assumption that each of fea-

tures extraction technique has its own advantages and can provide an addition

value if we combine them together. The idea of this approach based on com-

bined the four NLP techniques in on fusion model. The objective of this model

is to exploit all of the good features from all NLP methods in one combined

module. In this model each NLP technique has distinctive features. For exam-

ple, TF method characterized by syntactical analysis of requirements sentence.

W2V models characterized by the criteria of semantic meaning of the require-

ment sentence based on pre-trained big data model. TF-IDF method character-

ized by giving weight to keywords in requirements sentences based on all docu-

ments. Finally, BERT model is bidirectional encoder representations.To achieve

our goal, we combine all sub-systems that use different NLP methods into one

overall system to get the best classification result. We combine four CNN clas-

sifiers trained on the four different features as front-end model. CNN classifiers

was chosen due to its results superiority over the rest of the other classifiers.

The output scores for all CNN models was combined into one vector for each

56

sentence that are used for training a front-end classifier. We used logistic regres-

sion classifiers in the back-end model because we are deal with only 25 features

continues value. logistic regression use the natural logarithm to give wight for

each feature and transform its output using the logistic sigmoid function to re-

turn a probability value which can then be mapped to two or more discrete

classes. Other classification algorithms were used for this task like NB and SVM,

but logistic regression achieved best results for this mission. Figure 4.11 shows

the architecture of proposed combined model. In front-end model each classi-

fier produce one vector include probability for each NFR category. In back-end

model we fuse (combined) the four produced vector in one vector and we feed

it in back-end model.

FIGURE 4.11: Fusion model architecture

57

4.3 Evaluation :

In our methodology, the system evaluation is achieved by randomly splitting

dataset into two subsets; train and test. The training set is used for training ML

classifiers, while test set is used only for testing the performance of the classi-

fiers.It is worth saying the test dataset has never been used in training (holdout

dataset).

A general thumb rule that we followed is to use 70:30 train/test split. Which

is the common rule that deal with small size dataset. The total number of re-

quirement instances are 1247. The splitting process will split 872 instances for

training, and 375 instances for testing. In fusion model, the dataset was split

as in all experiments 70:30. Training dataset was used to train front-end model.

Test set in this model was used for both training back-end model and testing

overall fusion model. Where the test set was divided into two equal parts. And

we swapped between them by performing the experiment twice.

FIGURE 4.12: Train/Test Method

Most common classification performance metrics was used in all experi-

ments; accuracy, precision, recall and F1-score metrics [7]. Precision metric,

measure the percentage of the number of correctly classified requirements to the

total number of true positive and false positive prediction (positive prediction

value). In other words, the percentage of retrieved NFR that are relevant, where

high precision relates to the low false positive rate. This measure called type 1

error. Equation 4.2 defined precision measurement. TP "true positive" denoted

the number of correct classified requirements. FP "false positive" denoted the

58

number of incorrect classified.this is called type 1 error.

precision =
TP

TP + FP
(4.2)

While recall denotes the percentage of relevant NFR that related successfully.

This is also called type 2 error. The importance of both measurements (precision

and recall) depend on the objective behind the measurement.In this research

our object is to identity most NFR without losing a number NFR that may be

necessary in early steps of SDLC. Equation 4.3 shows the formulation of recall

recall =
TP

TP + FN
(4.3)

F-measure is the weighted harmonic average of precision and recall. There-

fore, F1-score takes both false positives and false negatives in calculation.F1-

score can be formulated as:

F −measure = 2.precising × recall
precising + recall

(4.4)

Statistical test was used in this experiment to evaluate statistically the results

of repeated experiments. We used popular non-parametric test named Wilcoxon

statistical test. Wilcoxon compares two paired groups and most of previous

studies used it in case they run the experiment many times [18] [28]. The goal

of the test is to determine if two or more sets of pairs are different from one an-

other in a statistically significant manner. In this thesis we compared between

four classification algorithms using different feature extraction techniques and

evaluated through Wilcoxon statistical test establish if they are statistically sig-

nificantly different from one another and the results are real and not caused by

luck or chance.

59

Chapter 5

Experiments and results

Referring back to the research questions mentioned in the introduction, this the-

sis aims to investigate the effectiveness of NLP techniques and ML approaches

for NFR classification from unconstrained requirements documents. In order

to present answers to those questions, we performed various experiments using

PURE dataset were described in the previous chapter. In this chapter we present

our experiments in view of this thesis research questions.

Recalling to the first research question [RQ1]: How well can natural lan-

guage processing techniques can identify effectively NFR from unconstrained

requirements documents. We used four vectorization techniques to represent

requirement sentences within each classifier :

1. Term Frequency (TF).

2. Term frequency inverse document frequency(TF-IDF).

3. Word2Vec model (W2V).

4. Bidirectional Encoder Representations from Transformers (BERT).

60

And recalling to the second research question [RQ2] : How well machine

learning algorithms can automatically classify NFR categories efficiently". We

used 4 machine learning classifiers :

1. Naiev Base (NB). .. Baseline..

2. Support Vector Machine (SVM).

3. Logistic Regression (LR).

4. Convectional Neural Network (CNN).

The main strategy is to use the four NLP techniques for mapping require-

ment sentences into numeric vectors and then train and evaluate the four ML

classifiers, each on the four vectors types. By this, we conduct 16 experiments.

5.1 Environment Setup:

To perform our experiments, we used Google Colab 1 cloud service which sup-

ports GPU processor. It is Jupyter notebook environment that runs entirely in

the cloud. Table 5.1 shows detailed specifications of the processing capability of

Colab cloud service.

Python programming language was used for developing the systems and

conducting all the experiments. Python is used because of its preference com-

pared to other languages in ML and NLP techniques [2]. It contains massive

number of frameworks and libraries for NLP techniques and data pre-processing[36].

1https://colab.research.google.com/

61

TABLE 5.1: Environment setup

Type Specification
1 CPU model 2 * Intel(R) Xeon(R) CPU @ 2.00GHz
2 CPU MHz 2000.168
3 cache size 39424 KB
4 Ram 32 GB
5 SSD 69 GB
6 GPU Tesla K80
7 OS Ubuntu 18.04.3
8 Environment Cloud service : Google Colab
9 Pro-Language Python 3.7

5.2 Pre-Processing :

First of all, we applied number of pre-processing steps in order to clean and pre-

pare text data into a form that is predictable and analyzable for our experiments.

In all of our experiments, we performed the pre-processing task through three

steps:tokenization, data cleaning and normalization.

5.2.1 Tokenization :

Requirement sentences were extracted from requirement document using python

Texttract package 2. This package is used to extract content from any type of

file, without any irrelevant markup. Then all sentences were broken up into

small chunk using python platform used to work with human language data

called natural language tool kit (Python NLTK) 3. This module includes tok-

enizer package to divide strings into lists of sub-strings based on white space

and punctuation.

2https://textract.readthedocs.io/en/stable/
3https://www.nltk.org/

62

5.2.2 Data cleaning :

In this step all irrelevant data are removed including punctuation, stop-words

and non alphabetic tokens. We also used python curpos NLTK package to re-

move English stop-word. For removing punctuation and non alphabetic tokens,

stripped library is used.

5.2.3 Normalization :

In normalization pre-processing step, a number of related tasks was done meant

to put all the words into a more uniform sequence. This process consists of three

steps : case folding, part of speech tagging and Lemmatization. In this mission

we used python WordNet toolkit 4, which is a large lexical database contain sets

of cognitive synonyms in English language [15]. The example below describes

how a cleaned sentence is normalized.

FIGURE 5.1: Pre-Processing Tasks in python

4https://wordnet.princeton.edu/

63

5.3 Features extraction :

Multiple NLP techniques were used to extract features from the requirements

sentences. First of all, NumPy Python package 5 were used to represent the

dataset in ndarray data structure. NumPy is the fundamental python package

needed for scientific computation, which supports large, multi-dimensional ar-

rays and matrices.

5.3.0.1 TF vectorization method :

To represent requirement sentence in TF method, dictionary of unique words in

the data set (BOW) were generated using bow_generate function.The size of this

dictionary was 1247 that equal the number of unique words in all requirement

sentences. This number also expresses the dimension size of each requirement

sentence represented by TF in this experiments. For each word exist in the re-

quirement sentence, one is added to its corresponding on it’s vector.

FIGURE 5.2: Requirement sentence representation in TF

5.3.0.2 TF-IDF vectorization method :

TF-IDF is distinguished from TF method in words weighting. In this method,

in addition to count each word. The weight of each word is calculated, which

signifies of its importance in all training requirement documents. To do that,

5https://numpy.org/

64

TfidfTransformer class were used from sklearn 6 feature extraction library to

transform requirement sentences to TF-IDF vectors. Each requirement sentence

represented by vector in 1247 features, which represent the number of unique

words in all requirement document. Figure 5.3, shows how TF-IDF method cal-

culate the weight for each word in requirement sentence, in which the words

that are frequently repeated will have little weights such as the word "system"

as its shown in yellow color.

FIGURE 5.3: Requirement sentence representation in TF-IDF

5.3.0.3 W2V vectorization method :

Word2Vec is one of the most popular google model to produce word embed-

dings 7. In this model, each word represented by vector with 300 dimension. In

this experiment the words in requirement sentences convert to 300 dimensional

vector.Thus each requirement sentences will be represented in 2 dimensional

vectors. In traditional ML such as NB,LR and SVM that deal with one dimen-

sional feature vector. We calculate the mean value for overall vectors in each
6https://scikit-learn.org
7https://code.google.com/archive/p/word2vec/

65

requirement sentence. So, one 300 dimension vector will represent each require-

ment sentence.In CNN classifier that deal with 2 dimensional vectors require-

ment sentences represent by 2 dimension numpy array.x-dimension represent

each word vector. While y-dimension represent the words that make up require-

ment sentences. Padding are required to unifies the dimension of numpy 2d

array.The y-dimension for each requirement sentences set to 50, which is equal

to the longest requirement sentence in PURE dataset after pre-processing. We

used pad_sequences package from tensorflow keras library 8. Gensim libraries9

also used to load W2V model, which is an open-source library implemented

in Python for topic modeling and NLP.Figure 5.4 shows how requirement sen-

tences represented in this model.

FIGURE 5.4: Requirement sentence representation in W2V model

5.3.0.4 BERT Model :

In this experiment we used ktrain Python library that contain BERT-Base pre-

trained models on tensorflow [33]. using 12-layer, 768-hidden, 12-heads, 110M

8https://www.tensorflow.org
9https://pypi.org/project/gensim/

66

parameters. We used TPU processor on Google colab platform with 32G of RAM

to handle this large model. As W2V model, BERT transform the words into

300 embedding vector.And each requirement sentences were represented by 2d

numpy array.In traditional ML the 2d numpy array reshaped into 1d features

vector using mean statistics. In CNN model 2d numpy are is compatible with

convolution layer. Padding technique is also required to unifies the dimension of

numpy 2d array. For PURE data set the maximum number of words in require-

ments sentences was 50. Thus, the size of padding technique was 50. Figure 5.5

shows how requirement sentences represented in this model.

FIGURE 5.5: Requirement sentence representation in BERT

Finally, the classifier model predict based on its experience, to which cat-

egory the requirement sentence belongs to using softmax activation function.

Figure 5.6 shows an array represent how much percentage the requirement sen-

tence belong to each NFR category: US, RE, A, SE and Other.

FIGURE 5.6: Output layer for CNN model

5.3.1 Parameters sitting for ML classifiers :

With different NLP techniques we fixed the classifiers parameters to evaluate

the effect of NLP techniques on classification results. We adopted the default

67

parameters sitting as its in Scikit-learn. Which is the most common free ma-

chine learning library for Python and matlab 10. In this subsection we list all

parameters for each classifiers that were used in our experiments.

5.3.1.1 Naive bayes :

Scikit-learn 11 with Gaussian NB package was used to implement NB classifiers.

The setup parameters for this classifiers was : [variance smoothing = 1e-9, Num-

ber of class = 6, Max-iter = 100]

5.3.1.2 Support vector machines :

For SVM classifiers, we used scikit-learn with SVM package. The followings pa-

rameters was used in our experiments for this classifier: [Regularization =True,

kernel=’rbf’, coef0=0.0]

5.3.1.3 Logistic regression :

In LR classifiers, we used linear model library with Logistic-Regression pack-

age. The setup parameters for LR experiments : [Tolerance = 0.001,fit inter-

cept=True, intercept-scaling=1, class-weight=None, random-state=None, Max-

iter = 100, Regularization =True]

5.3.1.4 Convolution neural network :

For all CNN based experiments,we used keras tensorflow library which is open-

source neural-network library written in Python 12. Embedding dimension pa-

rameter was fixed to 300, that equal to word vector dimension that generated

from embeding model. And NB-class was fixed to the number requirement

10https://pypi.org/project/scikit-learn/
11https://scikit-learn.org/
12https://www.tensorflow.org/

68

categories target classes, which equal to 6. While we were tuning the number

of filters until the best result was converged. And filter size was fixed to bi-

grams,trigrams and fourgram. The reset of parameters were fixed as its defaults:

[Conv layer = 3, pooling-Layer = 3, Embedding-DIM=300, NB-FILTERS = 200,

FFN-UNITS = 512, NB-classes = 6,Stride = 1, Filter-sizes = [2,3,4], DROPOUT_RATE

=0.05, BATCH-SIZE = 32, NB-EPOCHS = 20, regularizers = l2(0.01), activation-

output= sof-Max,training-Options = ’adam’]

5.4 Experiment 1: Optimal ML classifier using TF method

The Objective of this Experiment is to identify the optimal ML classifiers using

TF method. The four described ML approaches were adopted include three tra-

ditional approaches NB, SVM, logistic regression and deep learning approach

CCN. Each experiment is repeated 10 separate times to verify and to avoid the

randomness of results. Then statistical tests were performed to assess the vali-

dation of results.

For the traditional ML approaches the requirements sentences feeds to the

classifier using 1 hot vector in binary list form, that represent the count of all

words in requirement sentence. Each item in the list represents one feature, and

the type of requirement sentence represent the label. In CNN, the output vector

of TF method fed to the classifier vertically as an image. Figure 5.7 shows the

accuracy results for the 4 classifiers in 10 runs. The median value in box plot

figure represent in orange line inside each box, while the green triangle represent

the mean of accuracy results for the 10 runs.

69

FIGURE 5.7: ML classifiers accuracy using TF method

We also report three performance metrics, precision, recall and F1-score met-

rics for each NFR typee using Sklearn libraries 13. The results for each NFR types

are shown in table 5.2.

TABLE 5.2: ML performance metrics Using TF method

Naive Bayes SVM Logistic Regression CNN

Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score
US 0.789 0.843 0.843 0.793 0.852 0.819 0.838 0.866 0.850 0.820 0.876 0.846
RE 0.934 0.831 0.831 0.898 0.874 0.884 0.917 0.860 0.886 0.942 0.881 0.910
PE 0.847 0.739 0.739 0.810 0.883 0.844 0.806 0.880 0.840 0.847 0.870 0.858
A 0.951 0.917 0.917 0.896 0.960 0.926 0.949 0.865 0.904 0.939 0.929 0.933
SE 0.703 0.744 0.744 0.728 0.836 0.777 0.762 0.817 0.787 0.826 0.829 0.825

Oth 0.736 0.848 0.848 0.893 0.709 0.788 0.866 0.859 0.861 0.838 0.825 0.829

Avg 0.827 0.820 0.820 0.836 0.852 0.840 0.856 0.858 0.855 0.869 0.868 0.867

5.5 Experiment 2: Optimal ML classifier using TF-IDF method

In this experiment,we aimed to determine the optimal ML classifier using TF-

IDF method. For the traditional ML approaches the requirement sentence feeds

to the classifier using 1 vector in float list as we did in TF method. Where the

weight of each word in requirement sentence were evaluated. As previous ex-

periment this experiment ran 10 times. The accuracy results for 4 classifiers is

shown in figure 5.8.

13https://github.com/scikit-learn/scikit-learn

70

FIGURE 5.8: ML classifiers accuracy using TF-IDF method

Table 5.3 also shows the three performance metrics that used in classifiers for

each NFR types that we adopted in this thesis.

TABLE 5.3: ML performance metrics using TF-IDF method

Naive Bayes SVM Logistic Regression CNN

Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score
US 0.823 0.867 0.842 0.830 0.907 0.863 0.814 0.818 0.814 0.842 0.867 0.853
RE 0.848 0.878 0.862 0.905 0.822 0.861 0.916 0.836 0.874 0.926 0.849 0.885
PE 0.819 0.845 0.831 0.847 0.867 0.862 0.822 0.891 0.852 0.967 0.921 0.943
A 0.900 0.823 0.858 0.901 0.901 0.921 0.879 0.938 0.907 0.828 0.897 0.860
SE 0.761 0.782 0.770 0.806 0.870 0.836 0.773 0.901 0.831 0.806 0.832 0.818

Oth 0.877 0.834 0.854 0.906 0.851 0.865 0.917 0.786 0.845 0.859 0.866 0.860

Avg 0.838 0.838 0.836 0.866 0.870 0.868 0.854 0.862 0.854 0.871 0.872 0.870

5.6 Experiment 3: Optimal ML classifier using W2V model

In this experiment, the requirement sentence was feeded in first three classifiers

NB,SVM and LR in 1 dimension vector. Statistics mean, were used to perform

this task. While, CNN classifiers has an architecture to feed in with 2 dimensions

vectors as its performed with images. Figure 5.9 shows the classification mean

and median accuracy in 10 runs for each ML classifiers.

5.7 Experiment 4: Optimal ML classifier using BERT model

In this experiment we used the state of the art language model for requirement

sentence representation. BERT model words as w2v in 300 victor size. Similar to

71

FIGURE 5.9: ML classifiers accuracy using W2V model

TABLE 5.4: ML performance metrics using W2V model

Naive Bayes SVM Logistic Regression CNN

Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score
US 0.644 0.731 0.682 0.792 0.792 0.822 0.756 0.825 0.788 0.853 0.901 0.877
RE 0.767 0.676 0.718 0.904 0.904 0.852 0.812 0.787 0.797 0.879 0.810 0.843
PE 0.752 0.667 0.704 0.843 0.843 0.863 0.819 0.801 0.808 0.950 0.891 0.919
A 0.726 0.930 0.814 0.882 0.882 0.894 0.813 0.861 0.834 0.845 0.938 0.889
SE 0.719 0.662 0.687 0.758 0.758 0.789 0.748 0.767 0.754 0.891 0.854 0.872

Oth 0.751 0.742 0.745 0.862 0.862 0.821 0.829 0.749 0.787 0.969 0.969 0.969

Avg 0.727 0.735 0.725 0.840 0.845 0.840 0.796 0.798 0.794 0.898 0.894 0.895

the previous experiments, the mean for all vectors was calculated in first three

ML classifiers.In CNN classifiers the 2 dimension of the requirement sentence

feed in convolution layer in 2 dimension. The accuracy of ML classification for

the 10 runs was reported through box plot, as its shown in figure 5.10.

FIGURE 5.10: ML classifiers accuracy using BERT model

Furthermore, we found the three performance metrics for each NFR types

using BERT representation model. Table 5.5 presents precision, recall and F1

72

score for each NFR category.

TABLE 5.5: ML performance metrics using BERT model

Naive Bayes SVM Logistic Regression CNN
Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score Presesion Recall F1-score

US 0.621 0.501 0.553 0.647 0.731 0.682 0.778 0.790 0.782 0.910 0.964 0.933
RE 0.609 0.559 0.581 0.678 0.652 0.660 0.884 0.769 0.820 0.962 0.941 0.950
PE 0.575 0.577 0.572 0.577 0.722 0.638 0.797 0.833 0.814 0.853 0.913 0.880
A 0.689 0.651 0.668 0.814 0.799 0.805 0.900 0.881 0.890 0.959 0.891 0.923
SE 0.593 0.706 0.641 0.674 0.706 0.687 0.738 0.801 0.766 0.986 0.836 0.903

Oth 0.536 0.652 0.587 0.765 0.617 0.681 0.779 0.792 0.785 0.863 0.914 0.915
Avg 0.604 0.607 0.600 0.693 0.705 0.692 0.813 0.811 0.810 0.922 0.914 0.915

5.8 NFR classification accuracy in different NLP techniques:

After we performed the four experiments we summarize the mean of the accu-

racy results for all classifiers using all used NLP transform methods. See figure

5.11.

FIGURE 5.11: ML classifiers with all NLP methods

5.8.1 Optimal NLP techniques to transform NFR using CNN:

From the results of the previous presented experiments, CNN approach achieves

the best accuracy in NFR classification in all NLP transform methods. In figure

73

5.12, we compare the accuracy of CNN classifier using four NLP feature extrac-

tion methods.

FIGURE 5.12: Optimal NLP techniques using CNN classifiers

5.9 Experiment 5 : Fusion model

The objective of this experiment is to exploit the best of the four extraction fea-

tures types together. CNN classifiers in previous experiments outperforms the

other classifiers four all features extraction types. In this experiment we built

four CNN classifiers feeded by the four different features extraction methods

in parallel. The four CNN classifiers were combined together into one fusion

system. The fusion is done at the model level by concatenating the output vec-

tors of each CNN classifier (each trained on one feature extraction type) for the

six classes into one feature vector, each feature represent weight to predict the

correct NFR category. The resulting new feature vectors are then used to train

a logistic regression classifier at the back-end model. Figure 7.1 shows sample

results for fusion front-end model. To train the back-end logistic regression, we

need a new training data different than the 70% training subset. Therefore, we

split the 30% testing dataset into two equal subsets (i.e. 15% of the dataset).

74

The scores of the first subset are used to train the logistic regression back-end,

whereas, the second subset is used to test the overall fused system. Then, we

repeat the same experiment, but this time we exchange the two subsets. I.e. the

second subset is used to train the back-end classifier, whereas, the first subset

is used to test the overall fused system. The overall fused system performance

is the results obtained from the two subsets. It may be recalled that, the com-

putation time in this experiment takes four times the time of the previous ex-

periment, where we ran the model with four different extraction techniques, in

addition to back-end model that take less than 3 second. But mainly, the model

building process is a one-time process, then the model will be ready to use.

TABLE 5.6: Performance metrics report for fusion model

Fusion Model
Presesion Recall F1-score

US 0.95 0.98 0.96
RE 0.97 0.91 0.94
PE 1.00 0.92 0.96
A 1.00 0.98 0.99
SE 0.85 0.96 0.91

Oth 0.94 0.91 0.92
Avg 0.95 0.95 0.94

In this experiment we achieved accuracy 94.6% using the first subset of test-

ing data. and 94.1% accuracy for the second subset. In average, we achieved

accuracy of 94.3%. Table 5.6 shows the classification performance matrices re-

port for fusion multi models.

By this results fusion model outperform the accuracy of the all previous by

improving the classification accuracy by 2.4% Compared to the best results we

achieved in BERT model. We also performed a comparison between the CNN

classifiers using 4 NLP methods that we adopted, in addition to our fusion

75

model. Figure 5.13 shows how the accuracy for BERT model outperform sta-

tistical feature extraction techniques. using CNN classifiers, and how fusion

model improve BERT model by 2.4%.

FIGURE 5.13: CNN classification accuracy using NLP techniques
and fusion model

To analyze the results obtained from fusion model we formulated confusion

matrix in figure 5.14 which describe true positive,true negative, false positive

and false negative for fusion model results.

FIGURE 5.14: Confusion matrix for fusion model results

76

5.10 Statistical Test :

In this thesis, each classification experiment is executed 10 times to estimate the

variability of the results and to evaluation how close to each other. Also, to

increase the accuracy of the estimate, assuming that no bias or systematic error

is present. We compared the obtained results using Wilcoxon statistical test to

establish if they are statistically significantly different from one another and the

results are real and not caused by luck or chance. Wilcoxon signed-rank test is

non-parametric statistical hypothesis test used to compare the mean and median

of the values. To do that, first we found the mean with standard deviation for the

10 runs,see table 5.7.Furthermore we found the median and Interquartile range

for each classifiers in the 10 runs, see table 5.8. Then we calculated a wilcoxon

statistic test between each classifiers.

TABLE 5.7: Mean and Standard Deviation of Accuracy indicator.

NB SVM LR CNN
BERT 5.99e− 012.31e−02 6.93e− 012.15e−02 8.08e− 011.51e−02 9.17e− 011.47e−02

TF 8.20e− 011.47e−02 8.35e− 011.50e−02 8.57e− 011.36e−02 8.66e− 011.01e−02

TF-IDF 8.37e− 011.71e−02 8.68e− 011.45e−02 8.53e− 011.47e−02 8.75e− 011.53e−02

W2V 7.25e− 012.26e−02 8.40e− 011.24e−02 7.94e− 012.54e−02 8.92e− 016.70e−03

TABLE 5.8: Median and Interquartile Range of the Accuracy in-
dicator.

NB SVM LR CNN
BERT 5.99e− 012.12e−02 6.91e− 013.53e−02 8.08e− 012.27e−02 9.20e− 011.20e−02

TF 8.20e− 011.18e−02 8.34e− 011.67e−02 8.60e− 011.68e−02 8.72e− 011.15e−02

TF-IDF 8.35e− 012.20e−02 8.66e− 012.20e−02 8.48e− 012.45e−02 8.80e− 012.42e−02

W2V 7.25e− 011.80e−02 8.44e− 011.73e−02 7.91e− 012.34e−02 8.90e− 014.73e−03

Figure 5.9 represent wilcoxon results compared two paired groups of classi-

fiers results. Triangle symbols (O , N) indicate that results are statistically sig-

nificance in which p-value < 5%. The inverted white triangle O represents the

superiority of the algorithm the top of the table statistically over the algorithm

77

from the side of the table,while the black triangle N represents the opposite re-

lation. The dash line (-) were used to indicate that the caparison between the

two classifiers are not statistically significance, p-value > 5%.

TABLE 5.9: Wilcoxon values of the accuracy indicator (TF, TF-
IDF, W2V, BERT).

SVM LR CNN
NB O O O O O O O O O O O O

SVM O N N O O – O O
LR – O O O

78

Chapter 6

Discussion:

In this chapter we discuss the experiments results presented in the previous

chapter. We also reflect those results on the research questions listed in the in-

troduction of this thesis and how the obtained results present an answers to the

questions.

Let’s start with the second research question [RQ2]: How well machine

learning algorithms can automatically classify NFR categories efficiently, based

on IEEE-Std 830-1993 standard?. For this question we need to investigate the

effectiveness of the traditional and the state-of-the-art ML techniques in classi-

fying NFR from unconstrained software requirement documents.

The experiments from 1 to 4, three common ML classifiers were used in ad-

dition to the CNN. The objective of these experiments is to investigate the effi-

ciency of machine learning techniques to classify NFR. The classifiers achieved

varying results. Where the traditional ML approach (SVM.NB and LR) achieved

relatively good results with syntactic analysis. While its results fell with embed-

ding models. NB classifier achieved accuracy range from 60.3 % to 83.7%. SVM

classifier achieved accuracy in range between 69% to 86.8%. While Deep learn-

ing approach (CNN) outperform all traditional approaches by achieving results

79

range from 85% to 92%. By analyzing the results of all experiments, obviously

traditional ML approaches achieve better results in random vectorization meth-

ods than word embedding methods. This conclusion can be explained due to

failure traditional ML approaches to deal with high dimensions vectors in word

embedding models. While CNN approach was more successfully with word

embedding model due to ability of this model to handle 3D inputs in the convo-

lution layer such as word2vec and BERT model. We also can conclude that the

NFR classification accuracy mainly depends on two factors; the type of classifier

and the vectorization method that was used.

The results of the measurement metrics; precision, recall and F1-score met-

rics were closed to the accuracy results in the most cases except for the security

requirement class, as shown in tables 5.10 and 5.9. Precision metrics measure

positive prediction value. The systems precision for detecting the security re-

quirement class was low in the most traditional ML classifiers in range between

59.3% to 80.2% . While, CNN classifier was able to solve this problem through

improve detecting security class with a precision range between 82% to 98% as

shown in table 5.10. In the average precision (positive rate) for all classes in NB,

SVM and LR the classifiers achieved results between 60% to 80%. Whereas, the

CNN classifier was able to achieve precision between 80% to 90%.

Sensitivity of ML model were measure in this study using recall metric.

Which measure the fraction of the total amount of relevant instances that were

actually retrieved. In other word measure the ratio between how much were cor-

rectly identified as positive NFR to how much were actually positive NFR.This

metric also expresses the ability to find all relevant requirement category. CNN

classifier achieved best recall results in range between 86% to 91.4%. This means

out of every 100 NFR we succeeded in extracting 91 NFR. In experiment 5, we

80

used fusion model to employ all NLP techniques to extract features from re-

quirement sentence. We achieved 94% weighted recall. This results can min-

imize the number of unrevealed NFR from requirement document. By these

results, the number of extracted NFR increased from the presented requirement

document . And thus the software engineer can define most NFR that the cus-

tomer has expressed through the requirement document.

Recalling to first research question [RQ1]: How well natural language pro-

cessing techniques can identify effectively NFR from unconstrained require-

ments documents?. We investigated the effectiveness of the NLP techniques in

representing the NFR categories in the unconstrained requirement documents.

Two experiments were performed to present an answer to RQ1. First, we used 4

different NLP techniques with each ML classifier, including random vectoriza-

tion methods [TF and TF-IDF], and word embedding models [W2V and BERT].

The results in figure 5.11 shows how natural language techniques effect on clas-

sification results. And while some NLP techniques do well with some types of

ML classifiers, the others achieved low accuracy with other types of classifiers.

For example, BERT model achieved the highest accuracy with CNN classifier

equal to 91.4 %, while it achieved low results with traditional ML classifiers such

as NB and SVM. In contrast, the traditional ML classifiers such as NB, SVM and

LR achieved better results using random vectorization methods than word em-

bedding methods. Another result can be extracted from figure 5.9 , TF method

achieved the lowest results in each classifier. The TF-IDF representation method

achieved good results ranging between 83 % and 87%. All of this leads us to

one conclusion: random vectorization methods achieve better results with tra-

ditional ML (SVM,NB and LR) that have lower number of feature dimensions.

Whereas, word embedding methods that have high dimensional representation

achieved better results with deep learning approach (CNN) which have rich

81

information retrieval for requirement sentences, such as word2vec and BERT

model.

This finding explained by the nature of each model and the architecture on

which it is built. Traditional NLP techniques transform each requirement sen-

tence into one vector, whereas, word embedding model represent each word

in the requirement sentence into one high-dimensional vector (300). In this

case, more amount of information and semantic meaning of the requirement

sentences are preserved.

Another comparison we made presented in figure 5.12 to investigate the op-

timal NLP method to represent NFR with CNN approach. The results show that

BERT model achieved the best accuracy result in all experiments runs, Where,

TF achieved the worst. This leads us to conclude that NLP techniques that rep-

resent the requirements sentences in high dimensional multiple feature vectors

such as word embedding achieve a higher accuracy than NLP methods that rep-

resent the requirement sentences in one feature vector with low mount of infor-

mation. Finally, we present all previous results in par plot figure 5.11. It is clear

the superiority of CNN algorithm over all traditional approaches using seman-

tic analysis (BERT, W2V). While CNN doing worse with syntactic analysis (TF,

TF-IDF).

[RQ3]. How well the proposed system performance can improve by fusing

different NLP features together into one system?. This question were handled

in experiment 5. We preformed fusion model to combined the four NLP tech-

niques to feed it in 4 parallel CNN models. The objective of this experiment

is to exploit all the features from all NLP techniques. Some NLP techniques

have the ability to extract syntactic features from requirement sentences like TF

82

and TF-IDF, Other NLP techniques like W2V and BERT have the ability to ex-

tract semantic features. The results show that fusion system outperforms all

the individual proposed systems in previous experiment, with an accuracy of

94.3%. It achieved precision in range between 85% to 100%, and recall in range

between 91% to 98%. Table 5.6 presents the classification results of the fusion

model. Comparing to the previous experiments fusion model outperform the

accuracy of all previous experiment by improving the classification accuracy by

2.4%. Figure 5.13 also shows a comparison between the CNN classifiers using

4 NLP techniques that we adopted in addition to our fusion model. The fig-

ure shows how the accuracy for BERT model outperform statistical feature ex-

traction techniques using CNN classifiers, and how fusion model improve the

accuracy of BERT model by 2.4%.

Confusion matrix also have been used to analyzing classification results to

depict true and false positives as well as true and false negatives. figure 5.14

illustrates the confusion matrix for the classification results for fusion model

and include heat map to represent the number by darker color.

The correct classifications (true positive) are depicted on the diagonal, and

have been highlighted through dark blue color. For example the matrix shows

that from 63 usability requirements sentences fusion model categorize correctly

62 requirement sentences as usability requirement sentences. and categorize one

Incorrectly as other (False negative). By looking in the first column (usability

predicted), we see that 2 reliability sentences and other requirement sentences

incorrectly classified as usability (False positive). It can also be noted that there

are 10 NFR sentences classified as security, while it actually related to other cat-

egories three reliability, one performance and 6 others. That mean number of

83

extracted features from security sentences are shredded among multiple cate-

gories. It also can conclude that fusion model can classify correctly 58 avail-

ability NFR categorise from 59 actual sentences. While achieved 53 reliability

from 58 actual sentences. Comparison between all categories of NFR categories,

we find that performance NFR category was able to achieve the best positive

prediction value, where all the extracted positive performance sentences were

actually performance requirements sentences. And we also find that usability

and availability achieved the best sensitivity value. Where from 63 usability re-

quirements sentences fusion model was able to categorize correctly 62 require-

ment sentences as usability from 63 usability requirement sentences. And it was

able to categorize correctly 58 requirement sentences Of the 59 sentences that are

actually availability requirement sentences.

Wilcoxon statistical test were used to establish if they are statistically signifi-

cantly different from one another and the results are real and not caused by luck

or chance. Table 5.7 represents the mean and standard deviation for the clas-

sification accuracy in the 10 runs of the experiments. Table 5.8 also represent

the median and interquartile range accuracy. The darker shaded level in two

tables represents the better result. That mean CNN classifier exceeded all other

ML classifiers in all NLP methods. The results of Wilcoxon statistical test repre-

sented in table 5.9. This table shows that CNN outperformed other classifiers in

different NLP techniques in statistically significant manner. Where the inverted

white triangle (O) represents the superiority of the algorithm on the top of the

table statistically over the algorithm from the side of the table, while the black

triangle (N) represents the opposite relation. And the dash line represent that

there is no statistical superiority between the two parties. That mean the relation

between the two classifiers is not statistically significant where p-value higher

than 0.05 (> 0.05).

84

Chapter 7

Conclusion and future work:

Software requirements are captured and documented in human natural lan-

guage. It documented in a form called (requirements document). In general, re-

quirement document contains both functional and non-functional requirements.

Manually analyzing NFR is tedious and time consuming in SDLC. In this thesis,

we presented four ML approaches to identify and classify NFR from uncon-

strained requirement documents. Furthermore, we investigated the effective-

ness of NLP feature extraction techniques on NFR classification. Different NLP

techniques were presented in this thesis, include random and word embedding

vectorization methods to feed in four differnet ML classifiers.

The experiment was performed using (PURE) public dataset, which consists

of unconstrained requirements documents. We had to labeled the requirements

sentences in the documents manually by a group of software experts volunteers.

Serious criteria were applied to accept the label of each requirement sentence to

verify its authenticity.

A set of experiments are conducted for investigating the effectiveness of the

NLP techniques and the effectiveness of the ML techniques for classifying the

requirement sentences extracted from unconstrained requirement documents.

85

The traditional well-known TF and TF-IDF NLP techniques, and the state-of-

the-art word embeddings techniques Word2vec and BERT were used for rep-

resenting requirement sentences into a numerical feature vectors.The TF and

TF-IDF exploit the statistical information of the requirement sentence, whereas,

the embeddings methods exploit the semantic information of the sentences.

The traditional ML models based on the statistical NLP methods achieved

a best precision of 87% and recall of 86%. Where, CNN model achieved rel-

atively higher precision of 92% using the state of the art language modeling

method, BERT. Furthermore, fusion four CNN systems with multi NLP vector-

ization methods improved the classification accuracy by 2.4%.

From the presented results in this theses, we can draw four primary conclu-

sions. First, CNN approach classifies NFR efficiently,and outperforms other tra-

ditional ML approaches such as SVM, NB and logistic regression. Second, word

embedding models are more effective than other traditional NLP methods in

representing software requirement sentences for NFR classification .Third, NLP

techniques for NFR representation have a valuable impact on the NFR classifi-

cation results, and fusion multiple NLP techniques, significantly improves the

classification accuracy. Fourth, CNN approach and fusion multi NLP techniques

can identify unrevealed NFR efficiently.

7.0.1 Future work

The research of adopted NLP techniques and ML algorithm into requirement

classification is still continuing. Two primary direction can be investigated to

extend our work. First, we plan to expand the number of adopted NFR cate-

gories, such as (mutability, solubility, etc..). Second direction,we can continually

86

investigate the effectiveness of other ML approaches in classification NFR such

as recurrent neural network (RNN) and fusion more models.

7.0.2 Threats to validity

One of the study objectives is to collect a sufficient number of requirements sen-

tences contain NFR in various domain. This task include manual classification

requirement sentences based on its definition in IEEE-Std 830-1993. In this task

we adopted on group of volunteers who are experts in software engineering.

Mainly, the success of this process depends on the expert knowledge of the def-

inition of each NFR category. The threats to internal validity in this process

include human factor to determining correct identification of NFR categories.

In our methodology we performed a set of hard acceptance criteria to reduce

this threats as much as possible. This criteria include labeling each sentence by

two different experts. Furthermore, the two experts should have the same an-

swer for each review. In case the experts have assigned two different answers

for one sentence, we choose the review that has higher confidence. For each an-

swer two levels of confidence adopted in labeling task, low level and high level.

We avoided more than two levels of confidence to avoid the neutral choice that

most volunteers prefer. And if the two confidences are equal, the preference is

for the reviewer with higher experience. If experience are equal the sentence is

excluded.

Furthermore, in this study the classification results have been obtained only

for 5 NFR categories which don’t include all NFR categories. The large num-

ber of NFR types and available dataset obliged us to adopted only this num-

ber of NFR categories.However, we chose the top 5 NFR types that commonly

considered in most domains and identified from among the 14 main NFR. In

future-work we can expand in more NFR categories to include in our study.

87

FIGURE 7.1: Sample results for fusion front-end model

88

Bibliography

[1] Ravinder Ahuja et al. “The impact of features extraction on the sentiment

analysis”. In: Procedia Computer Science 152 (2019), pp. 341–348.

[2] AI Programming: 5 Most Popular AI Programming Languages | Existek Blog.

Feb. 6, 2018. URL: https://existek.com/blog/ai-programming-

and-ai-programming-languages/ (visited on 12/31/2019).

[3] Sousuke Amasaki and Pattara Leelaprute. “The Effects of Vectorization

Methods on Non-Functional Requirements Classification”. In: 2018 44th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA).

IEEE. 2018, pp. 175–182.

[4] Muhammad Zubair Asghar et al. “A review of feature extraction in senti-

ment analysis”. In: Journal of Basic and Applied Scientific Research 4.3 (2014),

pp. 181–186.

[5] Cody Baker et al. “Automatic Multi-class Non-Functional Software Re-

quirements Classification Using Neural Networks”. In: 2019 IEEE 43rd

Annual Computer Software and Applications Conference (COMPSAC). Vol. 2.

IEEE. 2019, pp. 610–615.

[6] Vikkiraman Balarajan and Punithan Balarajan. “A Short Review: Software

Requirements”. In: Proceedings of the Informatics Conference. Vol. 2. 2. 2016.

https://existek.com/blog/ai-programming-and-ai-programming-languages/
https://existek.com/blog/ai-programming-and-ai-programming-languages/

89

[7] Manal Binkhonain and Liping Zhao. “A review of machine learning al-

gorithms for identification and classification of non-functional require-

ments”. In: Expert Systems with Applications (2019).

[8] T Bures et al. “Requirement specifications using natural languages”. In:

Technical Report D3S-TR-2012-05 (2012).

[9] Agustin Casamayor, Daniela Godoy, and Marcelo Campo. “Identification

of non-functional requirements in textual specifications: A semi-supervised

learning approach”. In: Information and Software Technology 52.4 (2010), pp. 436–

445.

[10] Lawrence Chung et al. Non-functional requirements in software engineering.

Vol. 5. Springer Science & Business Media, 2012.

[11] Jane Cleland-Huang et al. “The detection and classification of non-functional

requirements with application to early aspects”. In: 14th IEEE International

Requirements Engineering Conference (RE’06). IEEE. 2006, pp. 39–48.

[12] IEEE Standards Coordinating Committee et al. “IEEE Standard Glossary

of Software Engineering Terminology (IEEE Std 610.12-1990). Los Alami-

tos”. In: CA: IEEE Computer Society 169 (1990).

[13] Alex Dekhtyar and Vivian Fong. “RE data challenge: Requirements iden-

tification with Word2Vec and TensorFlow”. In: 2017 IEEE 25th International

Requirements Engineering Conference (RE). IEEE. 2017, pp. 484–489.

[14] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers

for language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[15] Ingo Feinerer et al. “Package ‘wordnet’”. In: R package Version 0.1-11. Avail-

able at https://cran. r-project. org/web/packages/wordnet/wordnet. pdf, accessed 1

(2017).

90

[16] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. “PURE: A

dataset of public requirements documents”. In: 2017 IEEE 25th Interna-

tional Requirements Engineering Conference (RE). IEEE. 2017, pp. 502–505.

[17] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. “Towards

a Dataset for Natural Language Requirements Processing.” In: REFSQ

Workshops. 2017.

[18] Maria Haigh. “Software quality, non-functional software requirements and

IT-business alignment”. In: Software Quality Journal 18.3 (2010), pp. 361–

385.

[19] Rani Horev. BERT Explained: State of the art language model for NLP. Medium.

Nov. 17, 2018. URL: https://towardsdatascience.com/bert-

explained-state-of-the-art-language-model-for-nlp-

f8b21a9b6270 (visited on 08/20/2020).

[20] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. “Using linguistic

knowledge to classify non-functional requirements in SRS documents”.

In: International Conference on Application of Natural Language to Information

Systems. Springer. 2008, pp. 287–298.

[21] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. “Using linguistic

knowledge to classify non-functional requirements in SRS documents”.

In: International Conference on Application of Natural Language to Information

Systems. Springer. 2008, pp. 287–298.

[22] “IEEE Recommended Practice for Software Requirements Specifications”.

In: IEEE Std 830-1993/1998 (1998), pp. 1–40.

[23] Jung-Yi Jiang, Shian-Chi Tsai, and Shie-Jue Lee. “FSKNN: multi-label text

categorization based on fuzzy similarity and k nearest neighbors”. In: Ex-

pert Systems with Applications 39.3 (2012), pp. 2813–2821.

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

91

[24] Bernard EM Jones. “Exploring the role of punctuation in parsing natu-

ral text”. In: Proceedings of the 15th conference on Computational linguistics-

Volume 1. Association for Computational Linguistics. 1994, pp. 421–425.

[25] James Joyce. “Bayes’ Theorem”. In: The Stanford Encyclopedia of Philosophy.

Ed. by Edward N. Zalta. Spring 2019. Metaphysics Research Lab, Stanford

University, 2019. URL: https://plato.stanford.edu/archives/

spr2019/entries/bayes-theorem/ (visited on 07/13/2020).

[26] Eric Knauss et al. “Supporting requirements engineers in recognising se-

curity issues”. In: International Working Conference on Requirements Engi-

neering: Foundation for Software Quality. Springer. 2011, pp. 4–18.

[27] Zijad Kurtanović and Walid Maalej. “Automatically classifying functional

and non-functional requirements using supervised machine learning”. In:

2017 IEEE 25th International Requirements Engineering Conference (RE). IEEE.

2017, pp. 490–495.

[28] Xiaoli Lian and Li Zhang. “Optimized feature selection towards functional

and non-functional requirements in software product lines”. In: 2015 IEEE

22nd International Conference on Software Analysis, Evolution, and Reengineer-

ing (SANER). IEEE. 2015, pp. 191–200.

[29] Logistic Regression — ML Glossary documentation. URL: https : / / ml -

cheatsheet.readthedocs.io/en/latest/logistic_regression.

html (visited on 08/29/2020).

[30] Ashish Kumar Luhach et al. Advanced Informatics for Computing Research:

Third International Conference, ICAICR 2019, Shimla, India, June 15–16, 2019,

Revised Selected Papers, Part I. Google-Books-ID: LAuwDwAAQBAJ. Springer

Nature, Sept. 16, 2019. 492 pp. ISBN: 9789811501081.

https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/
https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html

92

[31] Long Ma and Yanqing Zhang. “Using Word2Vec to process big text data”.

In: 2015 IEEE International Conference on Big Data (Big Data). IEEE. 2015,

pp. 2895–2897.

[32] Anas Mahmoud and Grant Williams. “Detecting, classifying, and tracing

non-functional software requirements”. In: Requirements Engineering 21.3

(2016), pp. 357–381.

[33] Arun S Maiya. “ktrain: A Low-Code Library for Augmented Machine

Learning”. In: arXiv preprint arXiv:2004.10703 (2020).

[34] Tom M. Mitchell. Machine Learning. Google-Books-ID: EoYBngEACAAJ.

McGraw-Hill, 1997. 414 pp. ISBN: 978-0-07-115467-3.

[35] Natural Language Processing - Syntactic Analysis - Tutorialspoint. URL: https:

//www.tutorialspoint.com/natural_language_processing/

natural_language_processing_syntactic_analysis.htm (vis-

ited on 01/29/2020).

[36] NumPy — NumPy. URL: https://numpy.org/ (visited on 12/30/2019).

[37] Md Abdur Rahman et al. “Classifying non-functional requirements using

RNN variants for quality software development”. In: Proceedings of the 3rd

ACM SIGSOFT International Workshop on Machine Learning Techniques for

Software Quality Evaluation. ACM. 2019, pp. 25–30.

[38] Denni Aldi Ramadhani, Siti Rochimah, and Umi Laili Yuhana. “Classifica-

tion of non-functional requirements using semantic-FSKNN based ISO/IEC

9126”. In: Telkomnika 13.4 (2015), p. 1456.

[39] Abderahman Rashwan, Olga Ormandjieva, and René Witte. “Ontology-

based classification of non-functional requirements in software specifica-

tions: a new corpus and svm-based classifier”. In: 2013 IEEE 37th Annual

Computer Software and Applications Conference. IEEE. 2013, pp. 381–386.

https://www.tutorialspoint.com/natural_language_processing/natural_language_processing_syntactic_analysis.htm
https://www.tutorialspoint.com/natural_language_processing/natural_language_processing_syntactic_analysis.htm
https://www.tutorialspoint.com/natural_language_processing/natural_language_processing_syntactic_analysis.htm
https://numpy.org/

93

[40] Sentence: Definition & Types | Learn English. URL: https://www.learngrammar.

net/english-grammar/sentence-definition-n-types (visited

on 01/15/2020).

[41] Unnati S Shah, Sankita Patel, and Devesh Jinwala. “Specification of Non-

Functional Requirements: A Hybrid Approach.” In: REFSQ Workshops. 2016.

[42] Vibhu Saujanya Sharma, Roshni R Ramnani, and Shubhashis Sengupta.

“A framework for identifying and analyzing non-functional requirements

from text”. In: Proceedings of the 4th international workshop on twin peaks of

requirements and architecture. ACM. 2014, pp. 1–8.

[43] John Slankas and Laurie Williams. “Automated extraction of non-functional

requirements in available documentation”. In: 2013 1st International Work-

shop on Natural Language Analysis in Software Engineering (NaturaLiSE). IEEE.

2013, pp. 9–16.

[44] SVM | Support Vector Machine Algorithm in Machine Learning. Analytics

Vidhya. Sept. 12, 2017. URL: https://www.analyticsvidhya.com/

blog/2017/09/understaing-support-vector-machine-example-

code/ (visited on 08/29/2020).

[45] Mohammed Terry-Jack. NLP: Everything about Embeddings. Medium. June 3,

2019. URL: https://medium.com/@b.terryjack/nlp-everything-

about-word-embeddings-9ea21f51ccfe (visited on 06/04/2020).

[46] László Tóth and László Vidács. “Study of various classifiers for identifi-

cation and classification of non-functional requirements”. In: International

Conference on Computational Science and Its Applications. Springer. 2018, pp. 492–

503.

[47] Marc Toussaint. “Introduction to machine learning”. In: Online Course Notes.

July (2016).

https://www.learngrammar.net/english-grammar/sentence-definition-n-types
https://www.learngrammar.net/english-grammar/sentence-definition-n-types
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://medium.com/@b.terryjack/nlp-everything-about-word-embeddings-9ea21f51ccfe
https://medium.com/@b.terryjack/nlp-everything-about-word-embeddings-9ea21f51ccfe

94

[48] Abinash Tripathy, Ankit Agrawal, and Santanu Rath. “Requirement Anal-

ysis using Natural Language Processing”. In: Dec. 2014.

[49] Axel Van Lamsweerde. Requirements engineering: From system goals to UML

models to software. Vol. 10. Chichester, UK: John Wiley & Sons, 2009.

[50] Radu Vlas and William N Robinson. “A rule-based natural language tech-

nique for requirements discovery and classification in open-source soft-

ware development projects”. In: 2011 44th Hawaii International Conference

on System Sciences. IEEE. 2011, pp. 1–10.

[51] Jonas Winkler and Andreas Vogelsang. “Automatic classification of re-

quirements based on convolutional neural networks”. In: 2016 IEEE 24th

International Requirements Engineering Conference Workshops (REW). IEEE.

2016, pp. 39–45.

[52] Xusheng Xiao et al. “Automated extraction of security policies from natural-

language software documents”. In: Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering. ACM.

2012, p. 12.

[53] Wen Zhang et al. “An empirical study on classification of non-functional

requirements”. In: The twenty-third international conference on software engi-

neering and knowledge engineering (SEKE 2011). 2011, pp. 190–195.

	Introduction
	Motivation
	Problem statement
	 Research objectives
	Overview of research approach
	Research Questions
	Structure of thesis

	Background
	Software requirements :
	 Functional requirement:
	Non-Functional requirements:

	Natural language processing
	Syntactic analysis
	Semantic analysis
	Text Pre-processing
	Tokenization
	Punctuation removal
	Stop-word removal:
	Non-alphabetic tokens:
	 Normalization:
	Case folding:
	Parts of speech tagging (POS):
	Lemmatization:

	Features extraction (vectorization) :
	Term frequency (TF):
	Term frequency inverse document frequency (TF-IDF):
	Word embedding:
	Word2Vec:
	BERT :

	Machine Learning (ML)
	Support vectors machine (SVM):
	Naive bayes classifier (NB):
	Logistic Regression (LR):
	Convolution neural network (CNN):

	Literature review
	Rule-based approaches :
	Machine learning approaches :
	Literature review summery table:
	Summary:

	Research Methodology
	Data description :
	PURE dataset annotation:
	Dataset balancing :

	System design:
	Pre-processing:
	Tokenization:
	 Data cleaning:
	 Normalization:

	Features extraction (vectorization) :
	Random vectorization methods :
	Word embedding method :

	ML Classifiers :
	SVM classifier:
	Naive Bayes classifier:
	Logistic regression classifier :
	Convolution Neural Network (CNN):

	Fusion models

	Evaluation :

	Experiments and results
	Environment Setup:
	Pre-Processing :
	Tokenization :
	Data cleaning :
	Normalization :

	Features extraction :
	TF vectorization method :
	TF-IDF vectorization method :
	W2V vectorization method :
	BERT Model :

	Parameters sitting for ML classifiers :
	Naive bayes :
	Support vector machines :
	Logistic regression :
	 Convolution neural network :

	Experiment 1: Optimal ML classifier using TF method
	Experiment 2: Optimal ML classifier using TF-IDF method
	Experiment 3: Optimal ML classifier using W2V model
	Experiment 4: Optimal ML classifier using BERT model
	 NFR classification accuracy in different NLP techniques:
	Optimal NLP techniques to transform NFR using CNN:

	Experiment 5 : Fusion model
	Statistical Test :

	Discussion:
	Conclusion and future work:
	Future work
	Threats to validity

